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Abstract. This paper shows that investments based on deep learning signals extract profit-
ability from difficult-to-arbitrage stocks and during high limits-to-arbitrage market states.
In particular, excluding microcaps, distressed stocks, or episodes of high market volatility
considerably attenuates profitability. Machine learning-based performance further deterio-
rates in the presence of reasonable trading costs because of high turnover and extreme
positions in the tangency portfolio implied by the pricing kernel. Despite their opaque
nature, machine learning methods successfully identify mispriced stocks consistent with
most anomalies. Beyond economic restrictions, deep learning signals are profitable in long
positions and recent years and command low downside risk.
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1. Introduction
Financial economists have uncovered a plethora of
firm characteristics that predict stock returns in the
cross-section. However, recent work has challenged
the credibility of the evidence on stock return predict-
ability. Harvey et al. (2016) examine 296 published
significant factors and conclude that 80 to 158 of them
are likely to be false discoveries. Hou et al. (2020) fur-
ther show that 82% of 452 anomalies become statisti-
cally insignificant after excluding microcap stocks and
when using value-weighted returns. There is also mo-
unting evidence that anomalies tend to concentrate in
distressed stocks and extract most of their profitability
from short positions." Notably, it is increasingly difficult
to exploit anomalies in recent years because of
increased market liquidity and arbitrage activity.
Counter to this “anomaly challenging” strand of liter-
ature, there has been an emerging body of work that
reports phenomenal investment profitability based on
signals generated by machine learning methods.” Apply-
ing machine learning routines to financial data has been
implicitly motivated by the American Finance Associa-
tion (AFA) presidential address of Cochrane (2011), who
suggests that in the presence of a vast collection of noisy
and highly correlated return predictors, there is a need
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for other methods beyond cross-sectional regressions and
portfolio sorts. Indeed, machine learning offers a natural
way to accommodate a high-dimensional predictor set
and flexible functional forms, and it uses “regularization”
methods to select models, mitigate overfitting biases, and
uncover complex patterns and hidden relationships.

A close look at these two strands of literature, namely,
diminishing individual anomalies in contrast to the out-
standing profitability of machine learning signals that
aggregate multiple anomalies, suggests that our under-
standing of the economic significance of machine learn-
ing signals is inconclusive. Although vast evidence
shows that individual anomalies concentrate in difficult-
to-arbitrage stocks and high limits-to-arbitrage market
episodes, machine learning methods could indicate a
promising direction to identify mispricing when trading
frictions attenuate because of their advanced mechanism
of aggregating individual anomalies. Thus, a priori, it is
impossible to make clear inferences about the economic
significance of machine learning signals based on the
knowledge we have gained from individual anomalies.

This paper aims to fill this gap by comprehensively
examining whether investors can harvest extra profits
generated by various machine learning signals that
are detailed in the following paragraph. To do so, we
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first impose several economic restrictions. In the
cross-section, we limit the universe of stocks to those
that are relatively cheap to trade by excluding micro-
caps or distressed firms. In the time series, we examine
whether investment profitability is more pronounced
during high limits-to-arbitrage market states, such as
high volatility and low liquidity. We then assess the
turnover and the corresponding transaction costs asso-
ciated with implementing machine learning-based
investments and finally explore the economic founda-
tions of trading strategies advocated by seemingly opa-
que machine learning methods.

We consider a comprehensive set of linear and non-
linear models, study both spread (long-minus-short)
and tangency portfolios, and account for both the sto-
chastic discount factor (SDF) and beta pricing formu-
lations.” We first implement a neural network with
three hidden layers (NN3) as in Gu et al. (2020) (GKX)
and then follow Chen et al. (2020) (CPZ) to incorporate a
no-arbitrage condition into multiple connected neural net-
works, including feed-forward networks (FFNs), recurrent
neural networks (RNNs) with long short-term memory
(LSTM) cells, and a generative adversarial network
(GAN). We then analyze two conditional beta pricing
models in the machine learning universe, namely, instru-
mented principal component analysis (IPCA) per Kelly
et al. (2019) (KPS) and the conditional autoencoder (CA)
extension by Gu et al. (2021).

All these machine learning methods may differ in
sample coverage, input variables, and optimization
objectives; hence, we do not aim to identify the best
method for trading purposes or conduct a rigorous
comparison across the models. Instead, we examine
whether the machine learning-based investment pay-
off could still extend to economic significance in the
presence of plausible restrictions on the investment
universe. The empirical experiments are based on a
large sample of U.S. stocks from 1987 to 2017. The
analysis proceeds as follows. To set the stage, we rep-
licate the results reported in the original papers. The
value-weighted long-short portfolio return across all
stocks is 1.56% (2.18%, 0.95%, 1.16%) per month based
on the GKX (CPZ, IPCA, CA) signal, and the corre-
sponding Fama-French six-factor (FF6)-adjusted re-
turn is 0.92% (1.87%, 0.62%, 0.75%). Such large and
significant figures reflect the impressive success of
machine learning techniques in generating outstand-
ing performance relative to traditional methods such
as nonregulated regressions and portfolio sorts based
on individual anomalies.

Imposing economic restrictions reveals that the pre-
dictability of deep learning methods (i.e., GKX, CPZ,
and CA) weakens considerably. Relative to the full
sample evidence across all stocks, the value-weighted
FF6-adjusted return based on the GKX (CPZ, CA)
signal is 66% (71%, 48%) lower after excluding microcaps,

53% (77%, 75%) lower after excluding firms that do not
have credit rating coverage, and 78% (69%, 94%) lower
after excluding financially distressed firms that face fur-
ther deteriorating credit conditions. None of the deep
learning methods generates significant value-weighted
FF6-adjusted returns at the 5% level after excluding dis-
tressed firms. For perspective, we apply the same eco-
nomic restrictions to traditional methods and find a simi-
lar proportional magnitude of performance deterioration.
Although IPCA underperforms deep learning models for
the full sample, its performance only deteriorates mod-
estly for subsamples that consist of cheap-to-trade stocks.
Unlike deep learning models that facilitate nonlinearities,
IPCA draws on the linear dependence between stock
returns and firm characteristics. The evidence is thus con-
sistent with the concept that accounting for nonlinearities
is especially useful for difficult-to-value and difficult-to-
arbitrage stocks.

Our findings are robust to alternative ways to imple-
ment neural networks, such as imposing economic
restrictions on the training and validation samples
(rather than using the entire universe of stocks), con-
sidering an alternative loss function that value weights
(rather than equal weights) forecast errors, and predict-
ing risk-adjusted (rather than raw) returns.

We then show that all four machine learning signals
generate portfolio turnover that is considerably higher
than most individual anomalies. The monthly turn-
over in the long-short portfolio is at least 87% (163%,
113%, 148%) for the GKX (CPZ, IPCA, CA) method,
respectively. Altogether, in the presence of reasonable
trading costs, the machine learning-based investments
that we analyze would struggle to achieve a statistically
and economically meaningful risk-adjusted payoff.

The previously described findings are further con-
firmed in an investment universe consisting of equity
portfolios rather than individual stocks. In particular,
we use the approach of Kozak et al. (2020) (KNS) to
estimate the SDF. Because the SDF slope coefficients
correspond to weights of the mean-variance efficient
(MVE) portfolio (Hansen and Jagannathan 1991) and
the MVE portfolio tends to take extreme stock posi-
tions associated with poor estimates of mean returns
and the covariance matrix (Merton 1980, Green and
Hollifield 1992), we examine the implications of eco-
nomic restrictions on the SDF-implied MVE portfolio
in terms of performance and portfolio weights. We
find that the performance of the SDF-implied portfolio
also deteriorates in subsamples with economic restric-
tions. Moreover, conditional on a predetermined level
of market volatility, the SDF is estimated based on
rather extreme portfolio positions. For instance, the
SDF implies a —234% (—=91%) short position in an indi-
vidual anomaly portfolio at the 5th (25th) percentile
and a 190% (96%) long position at the 95th (75th) per-
centile. Thus, the pricing kernel might be inadmissible
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from a real-time investment perspective. Restricting
the investment universe to relatively cheap-to-trade
stocks considerably mitigates equity positions.

We next examine whether and how machine learning-
based performance varies with market conditions. Eco-
nomic theory implies that fewer trading frictions and
more arbitrage activity should improve price efficiency.*
Consistent with the economic notion of limits to arbi-
trage, we demonstrate that the investment strategy based
on GKX and CPZ signals (across all stocks) is consider-
ably more profitable during periods of high investor sen-
timent, high market volatility, and low market liquidity.
For instance, the monthly value-weighted FF6-adjusted
return based on the GKX signal is statistically insig-
nificant at 0.22% at times of low VIX and increases
dramatically to 1.66% at times of high VIX, whereas
the full sample average is 0.92%. In contrast, IPCA
and CA models display relatively modest time series
variation in trading profits and could even outper-
form in low limits-to-arbitrage market states.

We also examine the most recent years and find
that unlike traditional anomaly-based trading strat-
egies, all four machine learning signals continue to
predict cross-sectional stock returns in the post-2001
period across all stocks. This finding supports the con-
cept that machine learning techniques combine multi-
ple weak sources of information into a meaningful
composite signal. Consistent with our main results,
anomalous return patterns in recent years are also
confined to difficult-to-arbitrage stocks.

As emphasized by Karolyi and Van Nieuwerburgh
(2020), it is imperative to examine the economic founda-
tions of seemingly opaque machine learning methods.
We propose two experiments to gauge the economic
foundations. We first examine whether stocks with simi-
lar machine learning signals share common characteristics
that are known to predict returns. The evidence shows
that all four machine learning methods successfully iden-
tify mispriced stocks consistent with most anomaly-based
trading strategies. Stocks in the long positions of machine
learning-based investments are typically small, value, illi-
quid, and old stocks with a low price, low beta, high
11-month return (medium-term winners), low asset
growth, low equity issuance, low credit rating coverage,
and low analyst coverage. Therefore, despite their opaque
nature, machine learning signals successfully identify mis-
priced stocks consistent with well-established empirical
facts, without preselection of truly useful characteristics
and models. Our findings highlight the merits of employ-
ing machine learning methods to avoid the data snooping
problem in the anomaly literature and suggest that black-
box-like machine learning models are reasonably inter-
pretable, which is essential for a robust and credible
assessment of out-of-sample predictability.”

Second, we control for the industry benchmark in
machine learning signals and decompose the unconditional

payoff into two components: intra-industry and inter-
industry payoffs. Taking the GKX signal as an example,
we construct three trading strategies based on NN3-
predicted returns for all investable stocks (beyond the
extreme long and short portfolios), including (1) an
unconditional strategy that takes long (short) positions
on market winners (market losers); (2) an intra-industry
strategy that takes long (short) positions on industry
winners (industry losers); and (3) an inter-industry strat-
egy that takes long (short) positions on winner industries
(loser industries). We show that the intra-industry strat-
egy outperforms the unconditional strategy and the
inter-industry strategy, suggesting that GKX signal is
more informative for stock selection than for industry
rotation. Our findings are robust to similar return
decompositions based on IPCA and CA signals. Consis-
tent with the finding that machine learning signals
identify mispricing in difficult-to-arbitrage stocks,
adjusting for industry averages further controls for sim-
ilar firm fundamentals within the same industry and
thus better predicts subsequent corrections due to mar-
ket frictions.

With the recent development of financial technol-
ogy (Fintech), using machine learning tools to identify
new signals on price movements and to develop
investment systems that can outperform human fund
managers is gaining popularity (FSB 2017).° Our findings
further support the concept that machine learning-based
investments could hold considerable promise for asset
management. First, we find that they can mitigate the
downside risk and provide a good hedge during market
crises. For instance, for major episodes of market down-
turns (e.g., the 1987 market crash, the Russian default, the
bursting of the tech bubble, and the recent financial crisis),
the GKX (CPZ, IPCA, CA) method generates, on average,
a monthly value-weighted return of 3.56% (0.68%, 1.49%,
—0.53%) after excluding microcaps, respectively. For per-
spective, the contemporaneous market excess return is
—6.91%. Second, although the profitability of individual
anomalies is driven primarily by short positions and often
disappears in recent years, machine learning signals yield
considerable profit in the long positions and remain via-
ble in the post-2001 period. The performance of machine
learning signals could further improve on industry
adjustment.

To conclude, our paper is the first to provide large-
scale evidence on the economic significance of machine
learning methods. The machine learning (especially
deep learning) techniques that we analyze face many of
the challenges regarding cross-sectional return predict-
ability. In particular, anomalous return patterns charac-
terize difficult-to-value and difficult-to-arbitrage stocks.
In addition, to the extent that deep learning signals pre-
dict cross-sectional stock returns for the full sample, the
trading strategy is more profitable during periods
of high market volatility and low market liquidity.
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Machine learning signals also involve remarkably high
turnover and often require taking extreme long-short
positions in the tangency portfolio implied by the pric-
ing kernel. Beyond economic restrictions, machine
learning-based trading strategies nonetheless display
less downside risk, yield considerable profit in long
positions, and remain viable in the post-2001 period
and the crisis period. Finally, black-box-like machine
learning methods still generate economically interpret-
able trading strategies and are more meaningful for
stock selection than for industry rotation.

Our analysis initiates a protocol for future work to
demonstrate the feasibility of trading profits, such as
(1) constructing value-weighted portfolios after exclud-
ing difficult-to-arbitrage stocks, (2) considering portfo-
lio turnover and the corresponding transaction costs,
(3) ensuring that the proposed tangency portfolio miti-
gates extreme long-short positions, (4) excluding high
limits-to-arbitrage market states, (5) emphasizing per-
formance over recent years, and (6) focusing on long
positions.

Some recent studies have already responded to our
findings and considered these economic hurdles when
advocating new machine learning tools. These studies
indicate the potential promise of understanding the
cross-section of equity returns through the lens of
deep learning and artificial intelligence (AI). For
instance, CPZ continue to find a high annual Sharpe
ratio of the SDF portfolio at 1.73 after removing 40%
of the smallest stocks. Cong et al. (2021) use reinforce-
ment learning to directly construct an AlphaPortfolio
that maximizes the out-of-sample Sharpe ratio. The
AlphaPortfolio is robust to imposing various eco-
nomic restrictions in both the cross-section and time
series as we propose; hence, it could be a competent
and implementable approach for practitioners and
advance our understanding of cross-sectional return
predictability.

Taken together, our paper enriches the academic
and policy discussions surrounding the adoption of
machine learning techniques in asset management,
including the effectiveness and sustainability of new
trading signals, the lack of transparency and economic
interpretability in complex machine learning algo-
rithms, and the potential regulatory and supervisory
implications related to financial stability.

The rest of the paper is organized as follows. Sec-
tion 2 describes the methodology and data. Section 3
presents evidence on return predictability and other
characteristics of machine learning portfolios for the
full sample and subsamples with economic restric-
tions. Section 4 studies the time-varying return pre-
dictability of machine learning methods. Section 5
investigates the economic foundation for machine
learning methods. Section 6 concludes.

2. Methodology and Data

2.1. Methodology and Data Sources

Our empirical analysis starts with the use of two deep
learning methods that have been empirically successful
in predicting future stock returns. We first implement a
feed-forward neural network with three hidden layers
having 32, 16, and 8 neurons per layer (NN3), using
batch normalization and the Lasso penalty for training.”
According to the comparative analysis of GKX, the
NNB3 model displays superior out-of-sample perform-
ance relative to traditional and more advanced return
forecasting benchmarks. The second approach, advo-
cated by CPZ, combines four neural networks, includ-
ing two FFNs and two RNNs, with LSTM cells. Each of
the LSTMs is connected to one FEN. The two FFN out-
comes interact in the loss function to formulate a mini-
max optimization problem, termed the GAN.

As GKX and CPZ rely on multilayer neural net-
works, their works are considered deep learning rou-
tines. Although GKX studies a reduced-form setup in
that they do not explicitly impose economic restric-
tions on data, CPZ incorporates a no-arbitrage condi-
tion to estimate the SDF and its stock loadings. Specifically,
CPZ uses a minimax loss minimization problem formu-
lated as a zero-sum game. One player, the asset pricing
modeler, aims to choose the best-performing model,
while the other player, the adversary, attempts to
choose conditions under which the model delivers the
worst performance. Therefore, CPZ uses an adversarial
approach to select moment conditions that lead to the
largest mispricing, consistent with the findings in the
seminal paper by Hansen and Richard (1987).

We next consider two conditional beta pricing set-
ups in the machine learning universe, namely, instru-
mented principal component analysis (IPCA) and the
conditional autoencoder (CA). As proposed by KPS,
IPCA formulates stock returns as a linear function of
latent factors and allows factor loadings to vary with
observable firm characteristics. In our main analysis,
IPCA is estimated in a setup that imposes a zero-
alpha restriction and considers six latent factors.® For
robustness, we also report results for unrestricted
IPCA. Gu et al. (2021) further relax the linearity
assumption of KPS and use conditional autoencoder
neural networks to model latent factor loadings as a
flexible nonlinear function of firm characteristics. We
focus on the autoencoder for which loadings on latent
factors are modeled through neural networks with
two hidden layers having 32 and 16 neurons per layer.
The factors” neural network output layer has five neu-
rons, indicating five latent factors (CA2).”

In addition to the previously described routines at
the stock level, we also use the KNS approach to esti-
mate the SDF using equity portfolios. The KNS approach
aims to minimize the Hansen-Jagannathan distance
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(Hansen and Jagannathan 1991) using ridge regres-
sion with three-fold cross-validation.

To summarize, our battery of tests consists of (1)
nonlinear deep learning methods (GKX, CPZ, and
CA) along with linear models (IPCA and KNS); (2)
pricing kernel formulations (CPZ and KNS), beta pric-
ing representations (IPCA and CA), and a reduced
form approach (GKX); (3) routines that implement
stock-level analysis (GKX, CPZ, IPCA, and CA) along
with KNS that focuses on equity portfolios, and (4)
models that account for expected return variations
with both firm characteristics and macro conditions
(GKX and CPZ) versus firm characteristics only
(IPCA, CA, and KNS).

In what follows, we describe the sample used to
implement the GKX, IPCA, and CA methods. The
investment universe consists of all NYSE/AMEX/Nas-
daq stocks, with daily and monthly stock data obtained
from the Center for Research in Security Prices (CRSP).
Quarterly and annual financial statement data come
from the COMPUSTAT database. We construct 94 firm
characteristics that have been documented as significant
cross-sectional return predictors, including annually
updated predictors such as absolute accruals and asset
growth, quarterly updated predictors such as cash hold-
ings and corporate investment, and monthly updated
predictors such as 12-month momentum and idiosyn-
cratic Vola’cili’fy.10 To avoid forward-looking biases,
monthly characteristics are delayed by at most one
month, and quarterly and annual characteristics are
delayed by at least four and six months, respectively.
We also account for 74 industry dummies based on the
first two digits of Standard Industrial Classification (SIC)
codes and eight monthly macroeconomic predictors, as
in Welch and Goyal (2008), including the dividend price
ratio, earnings price ratio, stock variance, book-to-market
ratio, net equity expansion, T-bill rate, term spread, and
default yield spread."" We consider not only stock-level
and industry-level predictors but also interactions
between stock characteristics and macroeconomic state
variables (94 X 8), resulting in 920 predictors in total.

The full sample period ranges from 1957 to 2017.
The full sample for GKX and CA is then divided into
three subperiods: 18 years for the training sample
(1957 to 1974), 12 years for the validation sample (1975
to 1986), and the remaining 31 years (1987 to 2017) for
out-of-sample testing. We train the model every year
so that every year, the training sample expands. The
size of the validation sample remains fixed while we
roll it forward by one year. For the out-of-sample
estimation, we average across an ensemble of nine
models with the same neural network architecture but
distinct initial values. The final sample for out-of-sam-
ple tests consists of 21,882 stocks, with the number of

stocks per month ranging between 5,117 and 7,877.
In addition to the expanding window scheme for the
training sample, we also conduct an experiment
using a rolling window for the training sample (18
years) and for the validation sample (12 years). The
results of using either a rolling or an expanding window
for the training sample are qualitatively identical. Hence,
there is no particular effect of increased learning in the
training sample. IPCA skips the validation procedure
and requires at least 120 months for the in-sample esti-
mation, and forward rolling is performed on a monthly
basis.

The CPZ sample consists of all U.S. stocks from CRSP
with available data on 46 firm characteristics related to
past returns, investment, profitability, intangibles, value,
and trading frictions."> CPZ further include 178 macroeco-
nomic predictors, as well as nonlinear interactions among
firm characteristics and between firm characteristics
and macroeconomic states. The full sample period
ranges from 1967 to 2016, and it is divided into 20
years for the training sample (1967 to 1986), 5 years
for the validation sample (1987 to 1991), and the
remaining 25 years (1992 to 2016) for out-of-sample tests.
The final sample includes 7,904 stocks, with the number
of stocks per month ranging between 1,933 and 2,755.
The CPZ sample is populated with fewer stocks, particu-
larly because of the requirement to have full data records
for all firm characteristics.'®> For comparison, GKX set
missing characteristics to be equal to their corresponding
median values across all stocks.

Although the four machine learning methods we
analyze could differ in their sample coverage, input varia-
bles, and optimization objectives, we do not take a stand
on which is the most appropriate objective, and we do not
aim to identify the best-performing method. Despite the
distinct objectives of machine learning methods, such as
estimating the expected returns, variances, and covarian-
ces or maximizing the ex ante Sharpe ratio, they all pro-
vide predictions for future stock returns that can be used
to form trading strategies. If machine learning methods
competently predict stock returns or estimate the pricing
kernel, the predicted returns or loadings on the SDF
should be sulfficient to rank stocks and thus can be used
to form outperforming investment strategies. The choice
of objective is essentially a parameterization and imple-
mentation choice and relies on specific assumptions on
the economic mechanism underlying the data generating
process. The model performance depends on which
assumption is closer to the true, unknown data generating
process and remains an empirical question. Rather than
comparing the models or assessing the corresponding
objectives, we aim to comprehensively examine whether
machine learning signals could provide value that extends
to economic significance.
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2.2. Subsamples with Economic Restrictions

To set the stage, we replicate all machine learning
methods using the full sample, as in the original stud-
ies. We then move on to restrict the sample to the uni-
verse of relatively cheap-to-trade stocks. In particular,
the extant literature highlights that anomalous pat-
terns in the cross-section of asset returns are concen-
trated in microcap stocks.'* For instance, Novy-Marx
and Velikov (2016) show that microcaps display high
gross Sharpe ratios in most anomalies relative to other
size groups, but the difference is much smaller in net
Sharpe ratios after accounting for transaction costs. In
the same vein, Hou et al. (2020) document that 65%
(82%) of anomalies are statistically insignificant after
excluding microcaps based on NYSE breakpoints and
when using value-weighted returns and the cutoff ¢
statistic of 1.96 (2.78), suggesting that capital markets
might be more efficient than previously thought.

Thus, on the one hand, the collective evidence indi-
cates that microcaps are costly to trade to the extent
that anomalies in those firms could easily become
unprofitable for marginal investors. On the other
hand, machine learning techniques are particularly
useful for uncovering complex patterns and hidden
relationships and for combining multiple weak sour-
ces of information into a composite signal, and they
are often more effective than linear regressions in han-
dling multicollinearity (Rasekhschaffe and Jones 2019,
Gu et al. 2020, Karolyi and Van Nieuwerburgh 2020).
Altogether, a natural question to explore is whether
machine learning techniques can predict cross-
sectional stock returns for stocks other than micro-
caps. Thus, our first subsample excludes microcaps.

In the same vein, our second subsample includes
only rated firms, that is, firms with data on Standard
& Poor’s (S&P) long-term issuer credit ratings.15 Ina
given month, approximately 90% of the rated firms
are above the 20th NYSE size percentile. Unreported
results also show that rated firms tend to be large,
value firms with considerably higher past returns and
liquidity, lower idiosyncratic volatility, and more ana-
lyst coverage than nonrated firms. Thus, we focus on
relatively cheap-to-trade stocks by excluding nonrated
firms.

The third subsample imposes an additional filter on
the universe of rated firms. In particular, Avramov et al.
(2013, 2018) show that market anomalies among stocks
and corporate bonds tend to concentrate in financially
distressed firms and particularly around credit rating
downgrades. Their suggested mechanism is straightfor-
ward. Distressed firms display extreme values of pre-
dictive characteristics such as more negative past
returns, high idiosyncratic volatility, a high fraction of
negative earnings surprises, and high analyst disper-
sion; thus, they are sorted into the short leg of anomaly
portfolios. The sluggish response to financial distress

by retail and institutional investors leads to a wide
range of anomalous patterns in the cross-section of
stock and bond returns. Collectively, on the one hand,
investors tend to overprice financially distressed stocks.
On the other hand, credit rating downgrades are associ-
ated with substantially elevated trading frictions, and
therefore, overpricing cannot be easily arbitraged
away. Thus, the third subsample excludes distressed
firms around credit rating downgrades. Specifically,
among rated firms, we further exclude stock-month
observations from 12 months before to 12 months after
an issuer credit rating downgrade.

We report the number of stocks in each year for the
full sample and three subsamples in the online appen-
dix, Table IAl. Notably, applying sensible restrictions
significantly reduces the number of stocks. The average
monthly GKX (CPZ) sample is reduced by 49% (43%)
after excluding microcaps, 78% (71%) after excluding
nonrated firms, and 83% (78%) after excluding financially
distressed firms around credit rating downgrades. Conse-
quently, the existing evidence on machine learning-based
investments could be dominated by stocks that are
plentiful albeit low in aggregate market value and dif-
ficult to value and arbitrage.'® This preliminary find-
ing further motivates us to explore whether machine
learning methods can clear common economic restric-
tions in empirical finance.

3. Return Predictability in the Presence of
Economic Restrictions
We assess return predictability using conventional
portfolio sorts. In particular, at the end of each month
t, we construct portfolios using the four proposed
machine learning signals: (1) the one-month-ahead
out-of-sample stock return prediction using the NN3
model (GKX); (2) the risk loadings on the SDF esti-
mated from a combination of deep neural networks,
as noted earlier (CPZ); (3) the one-month-ahead out-
of-sample stock return prediction using the IPCA
model (KPS), and (4) the one-month-ahead out-of-
sample stock return prediction using the CA model
(Gu et al. 2021). A higher value of predicted returns
and risk loadings indicates higher expected returns in
the holding period. We sort stocks into decile portfo-
lios based on predicted returns or risk loadings and
evaluate portfolio returns in month t + 1. The bottom
(top) decile consists of stocks with the lowest (highest)
expected returns in the next month. We compute
equal-weighted and value-weighted holding period
returns for each decile portfolio. We also implement
the zero-cost trading strategy by taking long positions
in the top decile of stocks (highest expected returns)
and selling short stocks in the bottom decile (lowest
expected returns). The payoff of the long-short investment
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strategy is computed as the high (top decile) minus low
(bottom decile) portfolio return (HML)."”

In addition to raw portfolio returns, we report risk-
adjusted returns from (1) the CAPM, that is, only
adjusting for the market factor (MKT, defined as the
excess return on the value-weighted CRSP market
index over the one-month T-bill rate); (2) the Fama-
French-Carhart four-factor plus liquidity factor model
(FFC+PS) consisting of the market factor (MKT), the
size factor (SMB, defined as small minus big firm
return premium), the book-to-market factor (HML,
defined as high book-to-market minus low book-to-
market return premium) (Fama and French 1993),
Carhart (1997) momentum factor (MOM, defined as
winner minus loser return premium), and Pastor and
Stambaugh (2003) liquidity factor; (3) the Fama-French
five-factor model (FF5) consisting of the market factor
(MKT), the size factor (SMB), the book-to-market factor
(HML), the profitability factor (RMW, defined as robust
minus weak return premium), and the investment fac-
tor (CMA, defined as conservative minus aggressive
return premium) (Fama and French 2015); (4) the Fama-
French six-factor model (FF6) that adds the momentum
factor (MOM) to FF5 (Fama and French 2018), and (5)
the Stambaugh-Yuan four-factor model (SY) consisting
of the market factor (MKT), the size factor (SMB), and
two mispricing factors arising from the cluster of
anomalies related to firm management (MGMT) and
performance (PERF) (Stambaugh and Yuan 2017)."® We
rely on a single time series regression to estimate the
out-of-sample alpha, whereas our main findings remain
unchanged if we estimate time-varying beta for the
long-short portfolio using a five-year rolling window.
The standard errors in all estimations are corrected for
autocorrelation with four lags using the method of
Newey and West (1987)."

3.1. Evidence from NN3-Predicted Returns

We start by assessing the out-of-sample return predict-
ability of the GKX method. Table 1 reports the value-
weighted results. In the interest of brevity, we tabulate
the equal-weighted results in the online appendix,
Table IA2, and only discuss the main findings in this
subsection. As shown in Panel A of Table 1, using all
stocks in our sample, the value-weighted long-short
portfolio return is 1.56% per month (¢ statistic =4.53)
over the 1987-2017 sample period, and the risk-
adjusted return ranges between 0.77% and 1.89% with
a t statistic above 3.03 across all factor models. In con-
trast to the equal-weighted results, the profits weaken
considerably in value-weighted portfolios, and the
average decline in economic magnitude is 48% across
all performance measures. In addition, the long posi-
tion on stocks with the highest expected returns gener-
ates a significant and economically larger payoff than

the short position. For instance, the long leg yields a
significant FF6-adjusted return of 0.77% per month,
whereas the corresponding payoff on the short leg falls
to a statistically insignificant —0.15%.

The evidence on the relative strength of the long ver-
sus short leg appears to be at odds with the literature
documenting that the profitability of anomaly-based
trading strategies is attributable primarily to the short
leg of the trade (Hong et al. 2000; Stambaugh et al. 2012;
Avramov et al. 2013, 2018). The evidence, however, sup-
ports the concept that machine learning routines possess
superior ability to detect complex features in the data
that otherwise remain unnoticed. The empirical success
of long positions could be particularly valuable for insti-
tutions, such as mutual funds and pension funds, that
focus primarily on long positions.

We next exclude microcaps, that is, stocks with a
market capitalization smaller than the 20th NYSE size
percentile at the end of the portfolio formation month
t. As shown in Panel A of Table 1, the value-weighted
long-short portfolio return is significant at 1.05% per
month. The performance further deteriorates after
adjusting for risk exposures using the FF6 model, that
is, a statistically insignificant 0.31% per month, in con-
trast to 0.92% in the full sample. In addition, the pre-
dictive power of the GKX method in cross-sectional
stock returns is adequately captured by the Stam-
baugh and Yuan (2017) four factors, resulting in a stat-
istically insignificant SY-adjusted return for both
equal-weighted and value-weighted long-short port-
folios. Relative to the full sample, the equal-weighted
(value-weighted) payoff is 65% (49%) lower after
excluding microcaps across all performance measures.

The second subsample considers only rated firms,
that is, firms with data on S&P long-term issuer credit
ratings. We sort all rated firms into decile portfolios
based on NN3-predicted returns and calculate hold-
ing period returns. We tabulate the results in Panel B
of Table 1. The value-weighted long-short portfolio
yields a significant return of 1.02% per month and an
FF6-adjusted return of 0.43% per month. Excluding
nonrated firms creates a 57% (46%) decline in eco-
nomic magnitude across all equal-weighted (value-
weighted) performance measures relative to the full
sample.

The third subsample excludes observations on dis-
tressed firms around credit rating downgrades. In
particular, among rated firms, we further exclude
stock-month observations from 12 months before to 12
months after an issuer credit rating downgrade. This is
not a real-time trading strategy, as we look ahead when
discarding the 12-month period prior to the down-
grade. However, we aim to investigate whether the
trading profits generated from machine learning algo-
rithms go beyond a small subset of firm-months (i.e.,



Avramov, Cheng, and Metzker: Machine Learning vs. Economic Restrictions

Management Science, 2023, vol. 69, no. 5, pp. 2587-2619, © 2022 INFORMS

2594

(801 (¥2°0) (81°1) (98°1) (20©) (€79 (19°0-) (or1-) (990-) (1¥°0) (F271) (29%)
S0T°0 $90°0 00T°0 +881°0 #x90€°0 #exlTTT $50°0— G800~ 7500~ 9€0°0 <121°0 #:700'T L
(9¢'0-) (0%°0-) (81°0) (95°0) (18'1) (82£%) (98°1-) F1C-) (96'1-) (61'1-) (£20) (96°¢)
7800~ €900~ £10°0 6%0°0 SFLT0 #x1€0'T #8ST°0— #1970~ 9210~ 1600~ $20°0 #:068°0 9
(8¥'1) (60°T) (88°0) (0¥2) (962 (0g9) (29°0) (60°0) (52°0-) (081 (981) (82%)
9/T°0 F0T°0 7800 #6920 #9C€0 #x98T'T 8500 £00°0 8100~ £091°0 +2CT0 #x960'T g
(1Iro (16°0-) (£80-) (€20 (86°0) (80%) (07'1-) (Crara) (16°2-) (6s'1-) (€90-) (0€¢)
¥10°0 8700~ 0500~ 1200 G600 #:186°0 9/T0~ #1TC0~ #GET 0~ HT0- 9900~ #xGG8°0 i
(¢6'1) (z6'1) (0s'1) (¥ (#81) (9%°%) (12°0) (¥€0) (0%°0-) (09°0) (#F1°0-) (¢ee)
£C8T0 +892°0 9020 #C0€°0 «1€2°0 #xGET'T 8200 6£0°0 8700~ £90°0 L10°0— #¢5C6°0 ¢
(02 (071 (¥2°0) 911 (8¢°0-) (85¢) (02°0) (z90-) (¥8°1-) (o'1-) (9%°2-) (1972
#1620 €F1°0 2200 TITo 6900~ #x996°0 G200 €900~ #0200~ 80T 0— #G9T0— #:x652°0 4
(£8'1) (890 (z£0-) (sT'0-) (T21-) (200 (ot°0) (or'1-) (€6'1-) (8%'¢-) (0£'¢-) ¥6°0)
+89€°0 €10 180°0— £20°0— 9¢°0— #€82°0 6100 8410~ 9T 0— #6170~ #2080~ 860 Mo
AS 914 Gad Sd+D44 NAVD wImnjoy XS 944 G611 Sd+Ddd NAVD wInjoy Y Jo quey
SopeISUMOPUON] ordwes Suner ypai)
(papnpxe seperdumop pue djdures Juner JIpaid) suInial papIpard-gNN Aq PaIos SII39)1eI)s JUSWISIAUL 0 SUINJI PIAIYIIPM-an[eA g [oue]
(€£°0) (15'1) (17720 (749} (€79) (749} (€0¢) (80°%) (99°'%) (1€°9) #9°9) (€5%)
64170 T1e0 %790 wxLLL70 #:x68€°T werlFO'T #6940 #x916°0 #:90C'T #x19€°T #7681 #5:9GG°T TAH
(9%'1) (z02) (0872 (9572) (9%°¢) (6£9) (8¢%) (10°9) (€5°9) (£€9) (16'%) (S%9)
G810 «FET0 #5:LEE°0 «F0€°0 #9670 0T T #:G€L°0 #4:042°0 #9780 ##x£68°0 #1260 #+688'T ySty
(9¢0) (zo'0-) (s2'0) (60'1) (€270 (18%) (071 (€91) (L€ (0172 (zo¢) #1°9)
SH0°0 2000~ €200 7600 #x1GC0 PARN | 7810 FL1°0 #8270 #0FC0 ers 40 #:x0GET 6
(06°0) (92'1) (6172 (9270) (09°¢) (0T9) (V))] (9¢'0-) (09°0) (69°0) (1€72) (15%)
080°0 2600 #1410 #£9T°0 #2070 20T’ T 8000 6200~ ¥90°0 G500 #8120 #:820°T 8
(60°0-) (¥¢0-) ((x0)] (¥6°0) (VA%4)] #8°%) (86°0) (z8°0) (@1 #8'1) (or°¢) #1°9)
8000~ 4200~ 8000 800 =F6T°0 ##x860'T £60°0 €00 6¢1°0 +£91°0 #:x£0€°0 #:G8T'T Z
(Lre-) (egc-) (€6'1-) (€6'0-) (8¢°0) (CI%7)] (02°0-) #¥0-) (€T°0) (8£°0) (6172 (£8°%)
#GST°0— #€S1°0— #STL0— $90°0— 8200 #:x668°0 9100~ 6200~ 6000 £80°0 #G91°0 #6101 9
(80°0) (82°0-) (12°0-) (15°0) (81'1) (92%) (€e'1-) (85'1-) (zT1-) (0£70-) (zs0) (96°¢)
9000 610°0— $10°0— 0700 60T°0 2456460 9600~ 6010~ #3800~ 6¥0°0— 00 #1670 S
(19'1-) (91°2-) (62C-) r1-) (960-) (L¥e) (€T1-) (60C-) (1572-) (85°0-) (80°0-) (88°¢)
€S1°0— #8170~ #6810~ 801°0— €00~ +ex [78°0 9600~ #8210~ #GF10— 8200~ 9000~ #:x068°0 i4
(99°0) (9¢0) (zs0-) (90°0) (10'1-) (749} (91°0-) (€9:0-) (6T'1T-) (¢L0-) F0'1-) (12°€)
G900 T€0°0 8700~ 9000 0600~ ##:298°0 G100~ €500~ 010~ 6500~ 0600~ ##xG68°0 ¢
910 (67°0-) (€9°1-) (102-) (59¢-) ((zard] (z1°0) (8%7°0-) (9£°1-) (£9'1-) (8¢7¢-) (L€
9100 1500~ 9610~ #+G6T°0— #0670~ «/¥9°0 1100 6£0°0— «€9T°0— +8ST°0— #:97€°0— ++829°0 4
(€00 (€5°0-) (5'1-) (¥22) (60'%-) (¢80 (61°0-) (66°0-) (6'1-) (20°¢-) (6e9-) (8£°0)
9000 6200~ 0670~ #:xL9F°0— #:x868°0— F9€°0 €200~ 9T 0~ £09¢°0— ##:806°0— #x£06'0— 82€0 Mo
(papnpxa sdeoororu pue spdures [[ny) surnjax pajorpard-gNN Aq pajIos so1391eIls JUSWIISIAUL O} SUINIAI PAYSIOM-oNeA 1y [due
XS 944 Gdd Sd+D44 INAVD wmjay XS 944 61 Sd+Ddd NAVD w3y NESR DN
sdesororuuoN ordures [ng

‘poAIesaIsIBU (e ‘Ajuo asn feuossed 104 * 2i:S0 e ‘€202 AeIN 60 Lo [£TZ+S'0€2'82T] Aq BIo'swiojul woly papeojumod

SUINIAY PaIdIPaL] NI0MIBN [eInaN Aq PalIog SOI[0J1I0 ] JO

oURWIONRJ “| d|gel



Downloaded from informs.org by [128.230.54.217] on 09 May 2023, at 05:42 . For personal use only, all rights reserved.

Avramov, Cheng, and Metzker: Machine Learning vs. Economic Restrictions

Management Science, 2023, vol. 69, no. 5, pp. 2587-2619, © 2022 INFORMS

2595

(Continued)

Table 1.

Panel B: Value-weighted returns to investment strategies sorted by NN3-predicted returns (credit rating sample and downgrades excluded)

Nondowngrades

Credit rating sample

Return CAPM FFC+PS FF5 FF6 SY Return CAPM FFC+PS FF5 FF6 SY

Rank of R

0.123
(1.33)

0.167**
2.21)

0.255%**
(2.95)

0.272%%+
(3.42)

0.461%*
(4.54)

1.313%%
(6.06)

0.043
(0.46)

0.056
(0.75)
—0.055
(~0.60)

0.352%+ 0.161* 0.134*
(2.00) (1.67)

(3.39)

1.216%%
(5.38)

0.081
(0.61)

0.000
(0.00)

0.079
(0.76)

0.109
(1.18)

0.306**
(2.97)

1.139%*
(5.04)

0.037
(0.28)

0.223% 0.038 0.016
(0.42) (0.16)

2.27)

1.070%+
(4.61)

0.238
(1.64)
-0.129
(~0.52)

0.326%**
(2.68)

0.436%*
(3.40)

0.418**+
(3.20)

0.632%*
(4.35)

1.506***
(6.05)

0.169

(1.21)

0537+ 0.323%*+ 0.358** 0.255*
(2.59) (2.88) (2.18)

(3.83)

1.422%%*
(5.62)

High

0.204
(0.92)

0.517*
(1.87)

0.445**
(2.00)

0.996***
(3.40)

0.723*
(2.49)

0.150

(0.59)

1.344%% 0.743%* 0.784%+* 0.433*
(3.23) (2.70) (2.05)

(4.40)

1.024%%*
(3.18)

HML

Notes. At the end of each month ¢, stocks are sorted into deciles according to their one-month-ahead out-of-sample predicted returns (R) using a neural network with three hidden layers (NN3)
(Gu et al. 2020). This table reports the value-weighted returns for month f + 1 for each decile portfolio and the strategy of going long (short) on the highest (lowest) expected return stocks (HML)
over the entire sample period from 1987 to 2017. Portfolio returns are further adjusted by the CAPM, Fama-French-Carhart four-factor and Pastor-Stambaugh liquidity factor model (FFC+PS),

Fama-French five-factor model (FF5), Fama-French six-factor model (FF6), and Stambaugh-Yuan four-factor model (SY). Panel A reports the results for the full sample and the subsample that
excludes microcaps. Panel B reports similar statistics for the subsamples that exclude nonrated firms and credit rating downgrades. Newey-West adjusted f statistics are shown in parentheses.

, and ***Significant at the 10%, 5%, and 1% levels, respectively.

* k%

’

distressed firms around credit rating downgrades).”

As shown in Panel B of Table 1, during periods of
improving or stable credit conditions, the value-
weighted long-short portfolio yields a significant return
of 0.72% per month, whereas the FF6-adjusted return is
no longer statistically significant. Moreover, only one
(two) of five risk-adjusted returns remains significant at
the 5% threshold for the equal-weighted (value-
weighted) portfolio. Excluding distressed firms creates
an 86% (70%) decline in economic magnitude across all
equal-weighted (value-weighted) performance meas-
ures relative to the full sample.

For perspective, we consider two traditional meth-
ods as benchmarks. First, we apply the standard Ordi-
nary Least Squares (OLS) regression methodology
with all 920 predictors used in the GKX estimation to
predict the one-month-ahead out-of-sample stock
returns. For consistency, the sample starts from 1957,
and the out-of-sample test ranges from 1987 to 2017.
We estimate the OLS regression every month, and the
sample expands over time. Next, we sort all firms into
decile portfolios based on OLS-predicted returns and
calculate holding period returns. Given the multidi-
mensional challenge in the OLS regression, our sec-
ond benchmark relies on portfolio sorts while combin-
ing the payoff on individual anomalies. Specifically,
we sort stocks into deciles according to each of the 94
firm characteristics. We adjust the sign of those char-
acteristics so that a higher value predicts higher future
performance, in accordance with the literature. We
compute the equal- and value-weighted holding
period returns for each characteristic and then average
the portfolio returns across 94 characteristics.

We tabulate the results in the online appendix,
Table IA3, where Panel A shows the results for portfo-
lios sorted by OLS-predicted returns and Panel B
shows those for the combination of individual anoma-
lies. We report only the performance of long-short
portfolios for brevity. As expected, the GKX method
substantially improves the investment payoff relative
to the traditional methods. It outperforms the stand-
ard OLS by 82% (99%) across all equal-weighted per-
formance measures for the full sample (after exclud-
ing microcaps), and the OLS method fails to deliver
significant value-weighted payoffs for the full sample as
well as three subsamples. Relative to the full sample, the
equal-weighted payoff based on OLS-predicted returns
is 66% (64%, 64%) lower after excluding microcaps (non-
rated firms, distressed firms) across all performance
measures, while the corresponding value-weighted pay-
off is 40% (43%, 76%) lower, respectively.

Moving to the combination of individual anomalies
as an alternative benchmark, the GKX method gener-
ates a payoff that is approximately seven (nine) times
higher across all equal-weighted (value-weighted) per-
formance measures for the full sample and continues to
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outperform in all three subsamples. Relative to the full
sample, the equal-weighted payoff based on individual
anomalies is 44% (25%, 77%) lower after excluding
microcaps (nonrated firms, distressed firms) across all
performance measures, whereas the corresponding
value-weighted payoff is 38% (55%, 106%) lower.

In summary, when we apply standard economic
restrictions and focus exclusively on the subset of rela-
tively cheap-to-trade stocks, the long-short portfolio
performance weakens considerably in terms of both
statistical significance and economic magnitude. On
the one hand, machine learning substantially improves
the investment payoff compared with traditional meth-
ods such as OLS regression and portfolio sorts based on
individual anomalies. On the other hand, both machine
learning and traditional methods deliver lower payoffs in
the presence of economic restrictions, and their perform-
ance deteriorates by a similar proportional magnitude.

One may argue that because we train the NN3
model using the entire universe of stocks, this training
scheme could be biased in favor of detecting pre-
dictive patterns, especially for microcaps, nonrated
firms, and distressed firms. However, as long as there
are shared attributes between the subsamples, train-
ing based on the comprehensive universe could bene-
fit from the rich return structures in big data and
capture subsample patterns better. Nevertheless, as a
robustness check, we retrain the NN3 model in each

subsample separately and assess the out-of-sample
return predictability.

The results are tabulated in Table 2. We report only
the value-weighted performance of long-short portfo-
lios for brevity and tabulate the equal-weighted
results in the online appendix, Table IA4. First, we
exclude microcaps in both the NN3 estimations and
the portfolio sorts. Relative to the full sample, the
equal-weighted (value-weighted) payoff is 54% (37%)
lower after excluding microcaps across all perform-
ance measures. Moreover, there is a modest improve-
ment in trading profits when we exclude microcaps in
the training and validation samples. The value-
weighted return (FF6-adjusted return) is 1.19%
(0.49%) per month, in contrast to 1.05% (statistically
insignificant at 0.31%) when the machine learning
algorithm is trained with the full sample, whereas the
SY-adjusted return remains statistically insignificant.

Next, we exclude nonrated firms from both the
NN3 estimations and the portfolio sorts. Because the
data on S&P long-term issuer credit ratings are sparse
before December 1985, the out-of-sample test starts in
1999. The training and validation samples are defined
as in GKX. To put our findings in perspective, we
repeat the analysis from Table 1 during the post-1999
period and show that excluding nonrated firms cre-
ates a 50% (52%) decline in economic magnitude
across all equal-weighted (value-weighted) performance

Table 2. Robustness Check: Neural Network Estimation Based on Subsamples

Value-weighted returns to investment strategies
sorted by NN3-predicted returns

Training Testing Sample period Return CAPM FFC+ PS FF5 FF6 SY
Nonmicrocaps Nonmicrocaps 1987-2017 1.1971%** 1.572%* 0.838*** 0.838*** 0.486*** 0.306
(4.22) (5.38) (4.48) (3.49) (2.96) (1.57)
Credit rating Credit rating sample 1999-2017 1.021* 1.460*** 1.044%** 0.605 0.406 0.137
sample (1.98) (3.80) (3.33) (1.54) (1.39) (0.42)
Nondowngrades =~ Nondowngrades 1999-2017 0.797** 0.764** 0.263 0.147 0.035 -0.132
(2.33) (2.02) (0.82) (0.46) (0.13) (=0.36)
Full sample Full sample 1987-2017 1.556*** 1.894** 1.361%* 1.206%** 0.916*** 0.769***
(4.53) (5.64) (5.31) (4.66) (4.08) (3.03)
Full sample Nonmicrocaps 1987-2017 1.047** 1.389*** 0.771%** 0.627** 0.312 0.179
(3.24) (4.43) (3.24) (2.41) (1.51) 0.73)
Full sample Full sample 1999-2017 1.753%* 2144 1.610%** 1.307*** 1.154%* 0.827**
(3.44) (5.00) (5.16) (4.02) (3.98) (2.50)
Full sample Nonmicrocaps 1999-2017 1.232%* 1.647*** 1.102%** 0.771* 0.609** 0.326
(2.56) (4.17) (3.82) (2.43) (2.36) (1.05)
Full sample Credit rating sample 1999-2017 1.267** 1.641%** 1.087*** 0.907** 0.724** 0.265
(2.59) (4.11) (3.55) (2.41) (2.50) (0.78)
Full sample Nondowngrades 1999-2017 0.858* 1.177%* 0.667** 0.628* 0.460 -0.113
(1.97) (3.01) (2.13) (1.69) (1.43) (=0.33)

Notes. At the end of each month ¢, stocks are sorted into deciles according to their NN3-predicted returns (R) (Gu et al. 2020). This table reports
the value-weighted return for month t + 1 for the strategy of going long (short) on the highest (lowest) expected return stocks. Portfolio returns
are further adjusted by the CAPM, Fama-French-Carhart four-factor and Péstor-Stambaugh liquidity factor model (FFC+PS), Fama-French five-
factor model (FF5), Fama-French six-factor model (FF6), and Stambaugh-Yuan four-factor model (SY). We use the full sample and subsamples
that exclude microcaps, nonrated firms, and credit rating downgrades for the NN3 estimations (in the “Training” column) and the portfolio sorts
(in the “Testing” column). Newey-West adjusted ¢ statistics are shown in parentheses.

*,**, and ***Significant at the 10%, 5%, and 1% levels, respectively.



Downloaded from informs.org by [128.230.54.217] on 09 May 2023, at 05:42 . For personal use only, all rights reserved.

Avramov, Cheng, and Metzker: Machine Learning vs. Economic Restrictions

Management Science, 2023, vol. 69, no. 5, pp. 2587-2619, © 2022 INFORMS

2597

measures relative to the full sample. In addition, for
investors interested in trading rated firms, training the
machine learning algorithm with the full sample could
increase the trading profits. When we train the NN3
model using the entire universe of stocks and exclude
nonrated firms in portfolio construction, the value-
weighted long-short portfolio yields a significant FF6-
adjusted return of 0.72% per month. In contrast, training
with the subset of rated firms generates a statistically
insignificant monthly FF6-adjusted return of 0.41%.

We further exclude distressed firms around credit rat-
ing downgrades from the subsample of rated firms in
both the NN3 estimations and the portfolio sorts. Exclud-
ing distressed firms creates an 82% (84%) decline in
economic magnitude across all equal-weighted (value-
weighted) performance measures relative to the full
sample, and the FF6-adjusted return is statistically insig-
nificant for both equal-weighted and value-weighted
portfolios. Furthermore, training the machine learning
algorithm with the full sample also generates higher
value-weighted trading profits for nondistressed firms.

Overall, training the machine learning algorithm in
subsamples with economic restrictions does not alter our
main findings, that is, investment payoffs on machine
learning-based trading strategies deteriorate in the pres-
ence of sensible economic restrictions. In addition, train-
ing the machine learning algorithm using a selective set
of stocks of interest could adversely affect the out-of-sam-
ple return predictability potentially as a result of data
scarcity.

Because we focus on value-weighted portfolio
returns on a risk-adjusted basis in the out-of-sample
test, we also use an alternative objective function to
train the NN3 model. Instead of minimizing the equal-
weighted forecast errors in predicting the raw returns,
we train the model to minimize the value-weighted
forecast errors in predicting the FF6-adjusted returns.
This allows us to tilt the estimates toward large stocks
and focus on predicting risk-adjusted returns in train-
ing and validating the machine learning algorithm.

The results are tabulated in the online appendix,
Table IA5, where Panel A shows the results for portfo-
lios sorted by NN3-predicted alphas and Panel B shows
the results for portfolios sorted by NN3-predicted
returns (as in GKX) using the same universe of stocks.?!
In Panel A, the monthly value-weighted FF6-adjusted
return is 0.61% for the full sample, 0.38% after exclud-
ing microcaps, and becomes statistically insignificant
after excluding nonrated firms or credit rating down-
grades. In addition, the trading profits based on NN3-
predicted alphas using the value-weighted loss function
do not outperform the original GKX method (i.e., NN3-
predicted returns using the equal-weighted loss fu-
nction) for the full sample or for most subsamples
with economic restrictions, implying that the seemingly

more aligned objective function does not necessarily
improve the predictive performance. Collectively, our
main findings are robust to the alternative objective
function that tilts toward predicting risk-adjusted
returns for large stocks.

In short, our findings are robust to alternative ways
to implement the neural network model, such as
imposing economic restrictions on the training and val-
idation samples (rather than using the entire universe
of stocks), as well as considering an alternative loss
function that value weights (rather than equal weights)
forecast errors of risk-adjusted returns (rather than raw
returns). As Karolyi and Van Nieuwerburgh (2020)
point out, our experiments also call for more research
on the best practices to make implementation choices
when applying machine learning models to financial
data, such as how to balance the tradeoff between com-
pleteness and relevance in sample selection and how to
set an appropriate objective function.

3.2. Evidence from the Adversarial Approach

We implement the analysis from Table 1 but use the
deep learning signal based on the adversarial
approach of CPZ. Table 3 has the same layout as Table
1, where Panel A shows the results for the full sample
and the subsample excluding microcaps, and Panel B
shows those for the subsample of rated firms and the
subsample excluding credit rating downgrades. For
brevity, we tabulate the equal-weighted results in the
online appendix, Table IA6.

As shown in Panel A, over the 1987-2016 sample
period, the long-short portfolio return (FF6-adjusted
return) across all stocks is highly significant and eco-
nomically large, that is, 2.18% (1.87%) per month in
the value-weighted portfolio. Similar to our prior find-
ings, the economic magnitude is considerably attenu-
ated after excluding microcaps, that is, the long-short
portfolio return (FF6-adjusted return) declines to
1.08% (0.55%). Across all performance measures, the
equal-weighted (value-weighted) trading profit is 60%
(61%) lower for the subsample excluding microcaps
relative to the full sample.

As shown in Panel B, the value-weighted long-short
strategy across rated firms yields a monthly return of
0.81%, and the FF6-adjusted return is statistically
insignificant. If we further exclude credit rating down-
grades, the long-short portfolio return (FF6-adjusted
return) is 0.92% (0.57% with t statistic =1.82). Across
all performance measures, the equal-weighted (value-
weighted) trading profit is 60% (72%) lower for the
subsample of rated firms relative to the full sample
and 65% (64%) lower when we further exclude firms
with deteriorating credit conditions. Thus, investment
payoffs based on the CPZ signal also deteriorate in
the presence of sensible economic restrictions.
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Table 3. Performance of Portfolios Sorted by Risk Loadings on the Stochastic Discount Factor

Panel A: Value-weighted returns to investment strategies sorted by risk loadings (full sample and microcaps excluded)

Full sample Nonmicrocaps

Rank of p Return CAPM  FFC+ PS FF5 FFo6 SY Return CAPM  FFC+ PS FF5 FF6 SY

Low 0.078 —-0.962*** —0.593*** —0.859*** —0.590** -0.425*  0.342 —-0.662*** —0.355"* —0.617*** -0.398** -0.284
(0.21)  (-435) (-3.28) (-3.58) (-3.01) (-1.82) (0.99) (-3.48) (-2.17) (=3.11) (-225) (-1.36)

2 0.735**  -0.205 -0.055 -0.206 -0.103 -0.077  0.673** -0.264*  -0.093 -0.222 -0.118 -0.048
(245)  (-135) (-037) (-1.35) (-0.65) (-043) (242) (-1.81) (-0.65) (-1.54) (-0.79)  (-0.26)

3 0.812*** -0.123 0.033 -0.026 0.040 0.109 1.079***  0.163 0.330%**  0.270**  0.335***  (0.385**
(295)  (-0.99) 0.30)  (-0.23) (0.33) 0.78)  (4.10) (1.32) (2.77) (2.23) (2.63) (2.58)

4 0.859*** —0.035 0.094 0.012 0.061 0.127  0.705** -0.206 -0.129 -0.179* =077  -0.124
(3.36)  (-0.33) (0.89) (0.12) (0.53) 093) (247) (-1.51) (-1.21) (-171) (-170) (-1.17)

5 0.965**  0.055 0.064 0.042 0.025 0.018  0.987***  0.090 0.120 0.084 0.102 0.060
(3.82) (0.53) (0.68) (0.43) (0.26) (0.19)  (4.03) (0.88) (1.20) (0.78) (0.94) (0.53)

6 1.131%*  0.231* 0.173 0.220**  0.167 0.156 1.227*%  0.345%  0.273**  0.291***  0.251***  0.250**
(4.40) (1.97) (1.61) (2.06) (1.63) (1.33)  (5.16) (3.65) (2.95) (3.01) (2.66) (2.58)

7 1.255%*  0.366***  0.283**  0.241**  0.202* 0.249*  1.054***  0.171 0.107 0.113 0.065 0.061
(5.24) (3.83) (2.94) (2.54) (1.91) (2.33)  (4.02) (1.25) (0.85) (0.93) (0.53) (0.46)

8 1.224**  0.355***  0.233**  0.150 0.126 0.204*  1.138**  0.235**  0.127 0.076 0.024 0.059
(4.95) (3.11) (2.24) (1.28) (1.09) (1.73)  (4.46) (2.30) (1.22) (0.73) 0.21) (0.49)

9 1.476*  0.533**  0.419"*  0.238 0.277* 0.395**  1.289**  0.407**  0.287**  0.192 0.191 0.315**
(4.92) (2.74) (2.71) (1.49) (1.78) (2.51)  (5.05) (2.85) (2.13) (1.30) (1.27) (2.20)

High 2261%*  1.094%**  1.325%*  1.010***  1.277***  1.558*** 1.425**  0.420**  0.300% 0.102 0.150 0.264
(5.05) (3.58) (5.04) (3.01) (4.39) (4.95)  (4.55) (2.30) (1.92) (0.65) (0.96) (1.64)

HML 2.183**  2,056™*  1.918**  1.869**  1.867***  1.983*** 1.083**  1.083**  0.655"**  0.720***  (0.548**  0.548**
(6.37) (5.68) (5.66) (5.29) (4.86) (5.30)  (4.28) (4.06) (2.79) (2.93) (2.23) (2.27)

Panel B: Value-weighted returns to investment strategies sorted by risk loadings (credit rating sample and downgrades excluded)

Credit rating sample Nondowngrades
Rank of B Return CAPM FFC+ PS FF5 FF6 SY Return CAPM FFC+ PS FF5 FF6 SY
Low 0.504 -0.516*  -0.257 -0.579** —-0.371* -0.205 0.711** -0.280 —-0.030 -0.324 —-0.150 0.025
(1.38)  (-239)  (-131) (-248) (-1.79) (-0.83) (1.98)  (-125)  (-0.14)  (-1.35) (-0.68)  (0.10)
2 0.853***  —0.063 0.100  -0.052 0.056 0.161 0.965***  0.074 0.222 0.088 0.174 0.289
(2.85)  (~0.37) (0.61) (-027)  (0.28)  (0.78) (3.14) (0.39) (1.30) (041)  (0.83) (142
3 0.928**  0.024 0.149 0.072 0.121 0.209 1.041**  0.145 0.249* 0.235* 0.252* 0.291*
(3.76) (0.21) (1.18)  (057)  (0.89)  (1.28) (4.13) (1.10) (1.87) (174) (174  (1.83)
4 0.757**  —0.091 -0.038  —0.238** —0.202* -0.104 0.841**  0.004 0.067 —-0.141 -0.107  —0.004
(3.04)  (-0.79)  (=034) (=2.20) (-1.90) (-0.84) (3.54) (0.03) (059)  (-129) (-0.99) (-0.03)
5 0.937***  0.059 0.071 0.012 0.029 0.038 1.034***  0.160 0.166 0.133 0.139 0.128
(3.77) (0.49) (057)  (0.10)  (022)  (0.29) (4.09) (1.22) (1.20) 095  (097)  (0.89)
6 1.120%%*  0.249** 0.193 0.219* 0.188 0.104 1.225**  0.361***  (0.289** 0.336*  0.283**  0.214
4.73) (2.02) (157) (174  (147)  (0.78) (5.09) (2.63) (2.16) (243) (209 (147
7 1.144%** 0.292** 0.197 0.158 0.108 0.154 1.278*** 0.424*** 0.337** 0.306** 0.249* 0.287**
(4.44) (2.46) (1.60)  (1.18)  (0.82)  (1.22) (4.94) (341) (2.58) (2190 (182 (211
8 1.164%*  0.273* 0.158 0.105 0.058 0.123  1.269**  0.393**  (.270* 0.153 0.107 0.157
(4.63) (2.27) (1.28)  (0.85)  (043)  (0.90) (5.12) (2.87) (1.90) (1.05)  (0.69)  (1.05)
9 1.253%** 0.377** 0.245* 0.111 0.111 0.196 1.342%** 0.483*** 0.337** 0.212 0.204 0.291**
(4.78) (2.35) 170)  (077)  (076)  (1.38) (5.30) (2.99) (2.32) (145)  (137)  (2.00)
High 1.316***  0.290 0.164  -0.020 0.052 0.134 1.626%**  0.689***  0.567***  0.372* 0.423**  (0.536***
(3.81) (1.35) (0.88) (-0.10) (0.27) 0.69) (5.01) (3.02) (2.93) (1.89) (2.13) (2.85)
HML 0.812%** 0.806*** 0.420 0.559* 0.423 0.339 0.915%** 0.969*** 0.597** 0.696** 0.574* 0.511
(2.83) (2.68) (151)  (1.88)  (146)  (L.18) (2.91) (3.01) (2.00) (214) (182  (1.64)

Notes. At the end of each month ¢, stocks are sorted into deciles according to their risk loadings (8) on the stochastic discount factor estimated
from a combination of deep neural networks (Chen et al. 2020). This table reports the value-weighted returns for month ¢ +1 for each decile
portfolio as well as the strategy of going long (short) on the highest (lowest) risk loading stocks (“HML”) over the entire sample period from
1987 to 2016. Portfolio returns are further adjusted by the CAPM, Fama-French-Carhart four-factor and Péstor-Stambaugh liquidity factor model
(FEC+PS), Fama-French five-factor model (FF5), Fama-French six-factor model (FF6), and Stambaugh-Yuan four-factor model (SY). Panel A
reports the results for the full sample as well as the subsample that excludes microcaps. Panel B reports similar statistics for the subsamples that
exclude nonrated firms and credit rating downgrades. Newey-West adjusted ¢ statistics are shown in parentheses.

*,**, and **Significant at the 10%, 5%, and 1% levels, respectively.
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3.3. Evidence from IPCA and the CA

In this section, we use alternative machine learning
signals based on the IPCA approach of KPS and the
CA model of Gu et al. (2021). Both IPCA and CA
extract latent factors consistent with the notion of
principal component analysis (PCA). However, unlike
the standard PCA, both IPCA and CA allow factor
loadings to vary with predictive characteristics either
linearly (IPCA) or nonlinearly through neural net-
works (CA).%?

We implement similar portfolio analysis as before.
Table 4 reports the results, where Panel A shows the
results for portfolios sorted by IPCA-predicted returns
and Panel B shows those for portfolios sorted by CA2-
predicted returns. For brevity, we present only raw
returns and FF6-adjusted returns for the full sample
and for subsamples that exclude microcaps, nonrated
firms, and credit rating downgrades.”

As shown in Panel A, the value-weighted long-
short portfolio return (FF6-adjusted return) across all
stocks is 0.95% (0.62%) per month based on the IPCA
signal, which is 39% (32%) lower than that based on
the GKX signal, as shown in Table 1, and 57% (67%)
lower than that based on the CPZ signal, as shown in
Table 3. More importantly, there is no material deteri-
oration of performance in subsamples with economic
restrictions. The long-short strategy based on the
IPCA signal generates significant FF6-adjusted returns
for all subsamples, ranging between 0.43% and 0.61%
per month. Although the IPCA signal underperforms
GKX and CPZ for the full sample, it outperforms the
GKX signal by 82% and the CPZ signal by 10% based
on FF6-adjusted returns across the three subsamples
with economic restrictions. Note that IPCA draws on
linear dependence between average returns and firm
characteristics. In contrast, deep learning models
already facilitate nonlinearities. The evidence is thus
consistent with the concept that accounting for nonli-
nearities is especially useful for microcaps and diffi-
cult-to-arbitrage stocks.**

In Panel B of Table 6, the value-weighted long-short
portfolio return (FF6-adjusted return) across all stocks
is 1.16% (0.75%) per month based on the CA signal,
and the performance weakens considerably in sub-
samples with economic restrictions. The monthly FF6-
adjusted return for the long-short portfolio declines to
0.39% after we exclude microcaps and becomes statis-
tically insignificant after we exclude nonrated firms or
distressed firms.

Finally, we conduct two sets of robustness checks.
First, to address the potential inconsistency between
the in-sample estimations (based on the full sample)
and the portfolio sorts (based on subsamples with eco-
nomic restrictions), we re-estimate the IPCA for each
subsample separately. When credit rating data are
required for the in-sample estimation, the out-of-sample

test begins in 1996. The results are reported in the online
appendix, Table IA7, Panel A. Excluding microcaps
from the IPCA estimation yields a value-weighted FF6-
adjusted return of 0.76% per month, in contrast to
0.61% when IPCA is estimated for the full sample. If
we exclude microcaps when training the NN3 model
and IPCA estimation, the IPCA signal still outperforms
the GKX signal (the corresponding FF6-adjusted return
is 0.49%, as shown in Table 2). Moreover, estimating
IPCA for the subsample of rated or nondistressed firms
considerably reduces the model performance, and all
long-short portfolio payoffs are no longer significant at
the 5% threshold. Consistent with our early experiment
on NN3 estimation (Table 2), restricting the in-sample
estimation to a selective set of stocks of interest could
adversely affect the out-of-sample return predictability.

Another robustness check is to estimate the unre-
stricted version of IPCA that allows for intercepts as
functions of the instruments. As shown in the online
appendix, Table IA7, Panel B, we do not find a mate-
rial deterioration of performance for subsamples
excluding microcaps and nonrated firms, whereas the
FF6-adjusted return is no longer statistically signifi-
cant once we exclude distressed firms.

Collectively, the innovative machine learning (espe-
cially deep learning) techniques that we analyze face
the usual challenge of cross-sectional return predict-
ability, and anomalous return patterns are concen-
trated in stocks that are relatively difficult to value
and difficult to arbitrage. The trading profits based on
deep learning signals in GKX, CPZ, and CA often dis-
appear on a risk-adjusted basis after we impose com-
mon economic restrictions in empirical finance, such
as excluding microcaps, nonrated firms, or distressed
firms. Although IPCA underperforms nonlinear deep
learning models for the full sample, it delivers consis-
tent risk-adjusted performance even in the presence of
economic restrictions. Despite the challenge of generat-
ing sizable trading profits using the existing machine
learning tools, all machine learning methods substan-
tially improve the investment payoff compared with
the traditional methods with and without economic
restrictions.

3.4. Nonnormality, Turnover, and Trading Costs
of Machine Learning Portfolios

Beyond out-of-sample return predictability, investors
should be concerned with other potential risks and
costs in applying investment strategies. Focusing on
individual anomalies, past work shows that anomaly
payoffs are prone to large drawdowns. Daniel and
Moskowitz (2016) document that momentum strategies
are characterized by occasional large crashes. A recent
work by Arnott et al. (2019) shows that nine out of 14
popular factors are fat-tailed and asymmetric on the
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Table 4. Performance of Portfolios Sorted by IPCA and Conditional Autoencoder Predicted Returns

Full sample Nonmicrocaps Credit rating sample Nondowngrades

Rank of R Return FF6 Return FF6 Return FF6 Return FF6

Panel A: Value-weighted returns to investment strategies sorted by IPCA-predicted returns

Low 0.454 —0.331*** 0.353 —0.457* 0.357 —0.475*** 0.645** -0.217*
(1.59) (-3.54) (1.17) (—4.19) (1.17) (=3.76) (2.40) (-1.72)
2 0.763*** -0.095 0.756*** -0.075 0.782%* -0.131 0.989*** 0.082
(2.79) (-1.14) (2.80) (—0.86) (2.85) (-1.35) (3.87) (0.84)
3 0.881*** -0.020 0.877*** -0.007 0.888*** -0.044 1.024%** 0.094
(3.71) (=0.29) (3.44) (=0.10) (3.41) (-0.47) (4.30) (0.95)

4 1.021%** 0.109* 0.871*** 0.011 0.963*** 0.001 11154 0.166*
(4.18) (1.84) (3.64) (0.14) (4.11) (0.02) (5.13) (1.74)

5 0.949*** 0.009 1.057* 0.093 0.964*** 0.033 1.071%* 0.153*
(4.25) (0.12) (4.42) (1.34) (3.98) (0.44) 4.72) (1.91)

6 1.120%** 0.124 0.993*** 0.050 1071+ 0.097 1182+ 0.209**
(4.78) (1.62) (4.46) (0.67) (4.82) (1.19) (5.35) (2.31)

7 1.005%** -0.002 1112 0.125 1.093*** 0.036 1.221%* 0.169**
(4.17) (=0.03) (4.67) (1.55) 4.72) (0.43) (5.73) (1.99)
8 1.055%** 0.005 1.020%* 0.007 0.967*** -0.080 1.037* -0.019
(4.57) (0.07) (4.22) (0.11) (4.13) (-0.98) (4.63) (=0.19)
9 1.208** 0.188* 1.099*** 0.030 1.106*** -0.047 1.212%** 0.084
(5.05) (1.91) 4.79) (0.35) (4.64) (-0.46) (5.29) (0.76)

High 1.399*** 0.293** 1.254%** 0.157 1.249%** 0.132 1.378*** 0.214*
(5.01) (2.15) 4.77) (1.49) (4.80) (1.17) (5.27) (1.72)

HML 0.945%** 0.624*** 0.901*** 0.613*** 0.893*** 0.607*** 0.733*** 0.430**
(5.62) (3.31) (5.57) (3.71) (5.08) (3.38) (4.08) (2.37)

Panel B: Value-weighted returns to investment strategies sorted by CA2-predicted returns

Low -0.045 —0.506*** 0.210 —0.254* 0.309 —-0.241 0.683* 0.038
(-0.11) (-3.13) (0.53) (-1.75) (0.78) (-1.42) (1.79) (0.18)
2 0.588* -0.163 0.622** -0.110 0.673** -0.177 0.918*** 0.100
(1.94) (-1.49) (2.08) (=0.97) (2.21) (-1.33) (3.40) (0.81)
3 0.740%** -0.126 0.674*** —0.141 0.820%** —0.047 1.027*** 0.182
(2.99) (-1.45) (2.64) (=1.55) (3.19) (-0.43) (4.30) (1.52)
4 0.857*** -0.046 0.809*** -0.072 0.795%** -0.136* 0.929%** 0.009
(3.75) (=0.60) (3.56) (-1.11) (3.36) (-1.69) (4.19) (0.10)
5 1.041%* 0.093 0.9527%** 0.017 0.896*** -0.075 1.010%** 0.043
(4.69) (1.51) (4.33) (0.23) (4.00) (-1.19) (4.74) (0.62)

6 1.053*** 0.085 1.034%** 0.092 1.085*** 0.069 1.154%** 0.155**
(4.27) (1.18) (4.49) (1.58) (4.95) (1.07) (5.49) (2.13)

7 1.160*** 0.115 1.102%** 0.126 1.031%** 0.020 1.184%** 0.180*
(4.45) (1.21) (4.35) (1.34) (4.09) (0.22) (4.89) (1.79)

8 1.207*** 0.176* 1.107*** 0.066 1.187*** 0.117 1.339*** 0.276**
(4.39) (1.78) (4.26) (0.67) (4.66) (1.04) (5.47) (2.27)

9 1.220%** 0.057 1.248*** 0.180* 1.217** 0.112 1.335%** 0.238*
(3.89) (0.50) (4.44) (1.68) (4.32) (0.88) (5.04) (1.81)
High 1.114% 0.241 1.316%** 0.133 1.183** -0.054 1.348** 0.086
(2.89) (1.37) (4.28) (1.23) (3.53) (-0.35) (4.27) (0.56)
HML 1.159*** 0.746*** 1.105%** 0.387** 0.874*** 0.187 0.665** 0.048
(4.17) (3.01) (4.22) (2.03) (2.97) (0.79) (2.22) (0.20)

Notes. In Panel A, at the end of each month ¢, stocks are sorted into deciles according to their one-month-ahead out-of-sample predicted returns
(R) using instrumented principal component analysis (IPCA) (Kelly et al. 2019). We report the value-weighted returns for month f + 1 for each
decile portfolio as well as the strategy of going long (short) on the highest (lowest) expected return stocks (HML) over the entire sample period
from 1987 to 2017. Portfolio returns are further adjusted by the Fama-French six-factor model (FF6). We report results for the full sample as well
as for subsamples that exclude microcaps, nonrated firms, and credit rating downgrades. Panel B reports similar statistics when decile portfolios
are sorted by the one-month-ahead out-of-sample predicted returns (R) using a conditional autoencoder model with two hidden layers and five
latent factors (CA2) (Gu et al. 2021). Both IPCA and CA2 impose a zero-alpha restriction. Newey-West adjusted t statistics are shown in
parentheses.
*,**, and ***Significant at the 10%, 5%, and 1% levels, respectively.

downside. In addition, transaction costs could signifi-  for transaction costs, while no high-turnover strategy
cantly reduce the anomaly payoff. Novy-Marx and  achieves significantly positive net excess return.
Velikov (2016) find that most low-turnover and mid- In this section, we explore the downside risk and

turnover strategies remain profitable after accounting  turnover associated with machine learning portfolios.
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As described before, we sort stocks into decile portfo-
lios according to four machine learning signals. We
compute the value-weighted holding period return
for each decile portfolio and implement a zero-cost
trading strategy by taking long positions in the top
decile of stocks and selling short stocks in the bottom
decile. We also include the market portfolio as a
benchmark, and market excess return is defined as
value-weighted CRSP market return in excess of the
one-month T-bill rate. We report the annualized
Sharpe ratio, the skewness and excess kurtosis of the
monthly returns,”® the maximum drawdown, the
average monthly return during the crisis period, and
the monthly turnover for the long-short machine
learning portfolios and market portfolio.

In particular, we follow GKX to define the maxi-
mum drawdown of a strategy as MDD = maXo<t, <t,<T
(Yy, = Ys,), where Y}, and Y}, refer to the cumulative
log return from month 0 (i.e., January 1987) to ¢; and
tp, respectively. In addition, the crisis period includes
the market crash in October 1987, the Russian default
in August 1998, the bursting of the tech bubble in
April 2000, the Quant crisis in August 2007, and the
Bear Stearns bailout, and Lehman bankruptcy during
the recent financial crisis, that is, March, September,
and October 2008 (Griffin et al. 2011, Cella et al. 2013).

We also follow GKX to define the turnover in

_ 1y, Wi (4 1y, )
month t as TO; =35 Xer|wis S|t 2 Zjes|Wjt
(147 ) . o .
—% , where i € L (j €S) indicates that stock i
Wi - it

(/) belongs to the entire universe of long positions
(short positions) in months and t -1, w;; (wj;) refers
to the weight of stock 7 (j) in the portfolio in month ¢,
and r;; (rj;) refers to the return of stock 7 (j) in month ¢.
By construction, the one-side turnover for long posi-
tions or short positions ranges between zero and one,
and the turnover in the long-short portfolio, that is,
TO;, ranges between zero and two.

We tabulate the results in Table 5, where Panel A
shows the results for portfolios sorted by the NN3-
predicted returns (GKX), Panel B shows those for port-
folios sorted by the risk loadings on the SDF (CPZ),
Panel C shows those for portfolios sorted by the IPCA-
predicted returns (KPS), Panel D shows those for port-
folios sorted by the CA2-predicted returns (Gu et al.
2021), and Panel E shows those for the market portfo-
lio. We report results for the full sample and subsam-
ples that exclude microcaps, nonrated firms, and credit
rating downgrades. Following Arnott et al. (2019), all
returns are scaled to 10% volatility per year to facilitate
comparisons across various samples and methods.

First, machine learning portfolios earn an annual-
ized Sharpe ratio ranging between 0.78 and 1.23 for

the full sample compared with 0.53 for the market
portfolio. Imposing economic restrictions significantly
reduces the Sharpe ratio, although machine learning
methods still outperform the market in most subsam-
ples except for the one that excludes credit rating
downgrades.

Second, both the GKX and CPZ methods display
positive skewness and excess kurtosis for the full sam-
ple and all three subsamples, whereas the market
portfolio is negatively skewed. Additionally, both
IPCA and CA methods exhibit negative skewness for
the full sample and most subsamples, although they
are less negatively skewed than the market portfolio.

Third, machine learning methods can mitigate down-
side risk and protect investors from extreme crashes.
The maximum drawdown for machine learning portfo-
lios ranges between 20% and 35% for the full sample,
whereas the market portfolio experiences a larger draw-
down at 49%. Among most subsamples, machine learn-
ing methods also experience comparatively smaller
drawdowns than the market portfolio. In addition, the
average monthly returns on machine learning-based
trading strategies are mostly positive during the crisis
period, that is, 2.93% to 4.10% for the GKX method,
—0.02% to 0.90% for the CPZ method, —0.64% to 1.49%
for the IPCA method, and —1.80% to —0.05% for the CA
method. All machine learning methods exhibit a signifi-
cant improvement from the average market return of
nearly —7% contemporaneously.*®

Finally, all machine learning methods require high
turnover in portfolio rebalancing. The monthly turn-
over in the long-short portfolio ranges between 87%
and 98% for the GKX method, between 163% and
168% for the CPZ method, between 113% and 119%
for the IPCA method, and between 148% and 157%
for the CA method.?” This creates a one-side turnover
(average turnover on the long and short sides) of at
least 43% for the GKX method, 81% for the CPZ
method, 56% for the IPCA method, and 74% for the
CA method. To put this in perspective, low-turnover
strategies such as size and value typically display
monthly one-side turnover of below 10%; the corre-
sponding number is between 14% and 35% for mid-
turnover strategies such as failure probability and
idiosyncratic volatility and above 90% for high-turnover
strategies such as short-run reversals and seasonality
(Novy-Marx and Velikov 2016). Recall that the GKX
(CPZ, IPCA, CA) method generates a value-weighted
monthly FF6-adjusted return of 0.92% (1.87%, 0.62%,
0.75%) for the full sample and 0.31% (0.55%, 0.61%,
0.39%) after excluding microcaps; we can therefore infer
a break-even transaction cost of 0.94% (1.12%, 0.53%,
0.48%) for the long-short portfolio in the full sample and
0.36% (0.34%, 0.54%, 0.26%) for those in the subsample
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Table 5. Nonnormality and Turnover of Machine Learning Portfolios

Characteristics of value-weighted machine learning portfolios

Sharpe ratio Skewness Excess kurtosis Maximum drawdown Return in crisis Turnover
Panel A: Sorted by NN3-predicted returns
Full sample 0.944 0.631 5.222 0.350 4.100 0.976
Nonmicrocaps 0.644 0.361 7.062 0.349 3.563 0.869
Credit rating sample 0.639 0.064 7.875 0.420 3.435 0.889
Nondowngrades 0.449 0.146 8.550 0.333 2.931 0.920
Panel B: Sorted by risk loadings
Full sample 1.225 1.063 5.932 0.209 0.472 1.664
Nonmicrocaps 0.839 0.326 1.582 0.246 0.677 1.625
Credit rating sample 0.566 0.267 1.440 0.407 -0.023 1.652
Nondowngrades 0.602 0.344 1.675 0.447 0.903 1.678
Panel C: Sorted by IPCA-predicted returns
Full sample 0.967 —-0.449 4.805 0.203 0.574 1.186
Nonmicrocaps 0.978 —-0.267 5.369 0.234 1.493 1.130
Credit rating sample 0.880 -0.219 4.221 0.315 0.474 1.164
Nondowngrades 0.697 —-0.069 3.158 0.349 —-0.640 1.184
Panel D: Sorted by CA2-predicted returns
Full sample 0.784 -0.077 2.418 0.202 -0.047 1.565
Nonmicrocaps 0.748 0.291 4.684 0.207 -0.529 1.478
Credit rating sample 0.522 -0.471 4.119 0.252 -1.796 1.542
Nondowngrades 0.387 —-0.616 4.930 0.345 -0.167 1.571
Panel E: Market portfolio
Full sample 0.527 —-0.978 3.323 0.486 —6.954 0.089
Nonmicrocaps 0.530 —-0.959 3.222 0.485 —6.907 0.086
Credit rating sample 0.543 —-0.932 3.423 0.498 —6.747 0.080
Nondowngrades 0.682 —-0.856 3.311 0.408 —6.615 0.084

Notes. In Panel A, at the end of each month ¢, stocks are sorted into deciles according to their NN3-predicted returns (Gu et al. 2020). We
compute the value-weighted returns for month f + 1 for the strategy of going long (short) on the highest (lowest) expected return stocks over the
entire sample period from 1987 to 2017. For the long-short strategy, we report the annualized Sharpe ratio, the skewness and excess kurtosis of
the monthly returns, the maximum drawdown, the average monthly return during the crisis period, and the monthly turnover. We report the
results for the full sample as well as subsamples that exclude microcaps, nonrated firms, and credit rating downgrades. Panels B to D report
similar statistics when decile portfolios are sorted by the risk loadings on the stochastic discount factor (Chen et al. 2020), IPCA-predicted returns
(Kelly et al. 2019), and CA2-predicted returns (Gu et al. 2021), respectively. Panel E reports similar statistics on the value-weighted market
portfolio in excess of the one-month T-bill rate. All returns on the long-short strategy and market index are scaled to 10% volatility per year.

excluding microcaps to completely absorb the FF6-
adjusted return in the GKX (CPZ, IPCA, CA) method,
respectively.”®

Such break-even transaction cost estimates seem moder-
ate relative to those in the existing literature. Novy-Marx
and Velikov (2016) focus on value-weighted portfolios
sorted by the signals using NYSE breakpoints between
1963 and 2013 and suggest that transaction costs account
for more than 1% of the monthly one-sided turnover
(equivalent to 0.5% of the long-short portfolio turnover as
in our estimates) and that the statistical significance of the
return spread decreases proportionately. Because Novy-
Marx and Velikov (2016) sort portfolios based on NYSE
breakpoints, the long-short portfolios are less likely to be
dominated by small firms, and their estimates could be
more relevant for our subsample excluding microcaps.”

Alternatively, several papers argue that investors
face proportional transaction costs that decrease with
firm size and over time (Brandt et al. 2009, Hand and
Green 2011). We follow Brandt et al. (2009) and define

the one-way transaction cost of stock 7 in month ¢ as
Cit = Zjt X T, where Zit = 0.006 — 0.0025 x MEi,t, MEj,t
refers to the market capitalization of stock 7 in month ¢
and is normalized to be between zero and one. T;
decreases linearly from 2.6 in 1987 to 1 in 2002 and
remains at 1 thereafter.>’ As a result, the transaction
cost is approximately 1.56% for the smallest firms and
0.91% for the largest firms in 1987 and approximately
0.6% for the smallest firms and 0.35% for the largest
firms after 2002. This indicates an average transaction
cost of 0.67% for the full sample and 0.64% for the
subsample excluding microcaps over the entire sam-
ple period from 1987 to 2017.

For all machine learning methods, our break-even
transaction costs, which range between 0.48% and 1.12%
for the full sample and between 0.26% and 0.54% for the
subsample excluding microcaps, appear to be mostly
below or approximately the same as the estimated costs,
that is, 0.5% to 0.67%. Therefore, accounting for reason-
able transaction costs would make it difficult for most
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machine learning signals to leave alpha on the table.
However, our findings do not imply that machine
learning-based trading strategies are unprofitable for all
traders after accounting for transaction costs. Instead, we
show that it is challenging for an average investor to
achieve statistically and economically meaningful risk-
adjusted performance in the presence of reasonable
transaction costs. Investors may thus need to adjust their
expectations of the actual investment returns they can
receive. Although we explicitly focus on the universe of
cheap-to-trade stocks to assess economic significance,
from the modeling perspective, investors who are
sensitive to transaction costs could modify the exist-
ing off-the-shelf machine learning models and con-
struct portfolios under constraints, hence optimizing
after-trading-cost performance. Potentially promising
examples are presented in Bryzgalova et al. (2020),
Chen et al. (2020), Allena (2021), and Cong et al. (2021).
Their findings reinforce the notion that machine learn-
ing signals based on the entire sample do not suffi-
ciently characterize the investment universe beyond
difficult-to-arbitrage stocks; thus, accounting for trad-
ing costs in the optimization improves performance.

3.5. Performance and Weights of the SDF-Implied
Tangency Portfolio

In this section, we consider the method proposed by
KNS. Similar to CPZ, the KNS approach incorporates a
no-arbitrage condition to estimate the SDF. Although
CPZ estimate the SDF using individual stocks, KNS
focus on equity portfolios that represent characteristics-
based trading strategies. We first form portfolios based
on the 94 predictive characteristics employed by GKX.*!
We follow KNS and perform a rank transformation for
each characteristic and normalize each rank-transformed
characteristic. We then construct long-short portfolios
and compute characteristics-weighted portfolio returns.
We rely on daily returns and split the sample into two
subperiods. The first period, from September 1964 to
December 2004, is used for in-sample estimation.>? The
second period, from January 2005 to December 2017,
establishes the out-of-sample testing period.

Focusing on the first period, we estimate market
loadings and then orthogonalize portfolio returns with
respect to the market. We next estimate SDF slope coef-
ficients for each characteristic using a ridge regression.
That is, we minimize the Hansen-Jagannathan distance
(Hansen and Jagannathan 1991) measure subject to an
L?-penalty, whereas the penalty parameter is chosen by
a three-fold cross-validation method. To incorporate
our proposed economic restrictions, we separately esti-
mate the SDF for the full sample and three subsamples
that exclude microcaps, nonrated firms, and financially
distressed firms.”> Because SDF slope coefficients
indicate weights of the MVE portfolio, we use SDF

coefficients estimated from the pre-2005 sample to com-
pute the implied out-of-sample MVE portfolio return
(orthogonalized with respect to the market portfolio).
Portfolio returns are rescaled to have standard devia-
tions equal to the in-sample standard deviation of the
excess return on the aggregate market index, allowing
us to quantify the investment weights in the tangency
portfolio conditional on a predetermined level of
volatility.>*

The SDF-implied MVE portfolio return is already
CAPM-adjusted because the portfolio is orthogonal to
the market. In addition, the FF6-adjusted return is
estimated by regressing SDF-implied MVE portfolio
returns on benchmark portfolio returns, where the
benchmark portfolio return is estimated from unregu-
larized MVE portfolio weights based on five nonmar-
ket factors in the pre-2005 period. We also report the
annualized Sharpe ratio and the quantile distribution
of MVE portfolio weights (i.e., SDF slope coefficients)
across the 94 characteristics.

The results are tabulated in Table 6. First and fore-
most, the evidence in KNS clearly applies to our uni-
verse of 94 test assets. The performance of the SDF-
implied MVE portfolio is notable, with an annual
Sharpe ratio of 2.32 and both CAPM-adjusted and
FF6-adjusted returns exceeding 3% monthly for the
full sample. Next, we confirm our finding that impos-
ing economic restrictions reduces the performance of
machine learning methods. For instance, the SDF-
implied MVE portfolio yields an FF6-adjusted return
of 0.90% per month after excluding microcaps, and
the FF6-adjusted return is no longer significant at the
5% level after excluding nonrated firms or distressed
firms. The annualized Sharpe ratio also declines to
0.98 (0.90, 0.83) after we exclude microcaps (nonrated
firms, distressed firms).

Notably, portfolio weights (or pricing kernel slope
coefficients) display high dispersion across the 94 pre-
dictors and often exhibit extreme, possibly infeasible,
values. To achieve the same volatility as the market,
the SDF-implied MVE portfolio requires taking a
—199% (—91%) short position for an individual predic-
tor at the 10th (25th) percentile and a 169% (96%) long
position at the 90th (75th) percentile. Portfolio posi-
tions are obviously more extreme at the 5th and 95th
percentiles, rising to —234% and 190%, respectively.”
Thus, the pricing kernel-based optimal portfolio may
be an inadmissible investment from a practical per-
spective. However, imposing economic restrictions
significantly lowers the odds of extreme positions. For
instance, the SDF-implied MVE portfolio requires tak-
ing a —24% (—14%, —22%) short position for an individ-
ual predictor at the 25th percentile and a 41% (19%,
14%) long position at the 75th percentile after micro-
caps (nonrated firms, distressed firms) are excluded,
respectively.
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Table 6. Performance and Weights of SDF-Implied Mean-Variance Efficient Portfolios

Characteristics of SDF-implied MVE portfolios

SDF-implied MVE portfolio weights

Sharpe Standard

CAPM FF6 ratio Mean deviation Minimum 5% 10%  25% Median 75% 90% 95% Maximum

Full sample
(6.01) (5.90)
Nonmicrocaps
(3.88) (2.87)

3.662%* 3.338*** 2318 0.083 1.338 —2.994 -2.343 -1.994 -0912 0.341 0.964 1.687 1.895  3.182

1.543*** 0.895** 0.977 0.084 0.447 -0.863 —-0.666 —0.592 —0.238 0.072 0.407 0.647 0.741 1.431

Credit rating 1.418** 0.717*  0.898 —0.006 0.254 -0.678 —-0.473 -0.382 —-0.137 -0.003 0.187 0.326 0.387  0.419
sample (2.97) (1.93)
Nondowngrades 1.308** 0.545 0.828 -0.022 0.248 -0.543 -0.448 -0.370 —-0.217 0.004 0.135 0.293 0.376  0.595

(92)  (1.59)

Notes. We follow Kozak et al. (2020) to construct the SDF-implied MVE portfolio based on ridge regression in the pre-2005 sample and estimate
the out-of-sample performance in the 2005 to 2017 period. We report the monthly abnormal returns adjusted by CAPM and the Fama-French six-
factor model (FF6). CAPM-adjusted returns equal the SDF-implied MVE portfolio returns because the portfolio is orthogonal to the market. FF6-
adjusted returns are estimated by regressing the SDF-implied MVE portfolio returns on benchmark portfolio returns, where the benchmark
portfolio returns are estimated from unregularized MVE portfolio weights and five nonmarket factors in the pre-2005 period. We also report the
annualized Sharpe ratio and the quantile distribution of the SDF-implied MVE portfolio weights. We report the results for the full sample and
subsamples that exclude microcaps, nonrated firms, and credit rating downgrades.

*,** and ***Significant at the 10%, 5%, and 1% levels, respectively.

The collective evidence suggests that the machine
learning (especially deep learning) techniques we exam-
ine, face the usual challenge of cross-sectional return pre-
dictability. We analyze the out-of-sample trading profits
using predictive signals generated from five machine
learning methods advocated by the recent literature,
including three deep learning signals (ie., GKX, CPZ,
CA) and the IPCA and KNS methodologies. We con-
sider both the SDF methodology adopted by CPZ
(stock-level) and KNS (portfolio-level) as well as beta
pricing formulations per IPCA and CA. Once we apply
NYSE breakpoints to exclude microcaps, the value-
weighted FF6-adjusted return is 66% (71%, 48%) lower
than that for the full sample based on the GKX (CPZ,
CA) signal. Similarly, excluding distressed firms, the
value-weighted FF6-adjusted return is 78% (69%, 94%)
lower than that for the full sample based on the GKX
(CPZ, CA) signal. In addition, the value-weighted FF6-
adjusted return is significant in only one of three sub-
samples (i.e., excluding microcaps, nonrated firms, and
distressed firms) at the 5% threshold for all three deep
learning signals. Moreover, IPCA underperforms deep
learning models for the full sample but does not display
a material deterioration of performance in subsamples
with economic restrictions. As machine learning-based
trading strategies require relatively high portfolio turn-
over and take extreme long-short positions in the SDF-
implied tangency portfolio, investors may need to further
lower their expectations of achievable performance.

Our findings suggest that economic restrictions play
an important role in assessing whether newly proposed
machine learning methods are effective and exploitable
in real time, especially for investors who are sensitive to
transaction costs and prefer to avoid microcaps and

distressed firms in portfolio management. In line with
Arnott et al. (2018) and Karolyi and Van Nieuwerburgh
(2020), our findings highlight the importance of adopt-
ing back-testing protocols (such as economic restrictions,
in our context) in evaluating machine learning methods
and verifying their external validity when applying to
other settings, for example, different universes of stocks,
markets, asset classes, and sample periods.

4. Time-Varying Return Predictability

The previous results demonstrate that the cross-
sectional return predictability of machine learning sig-
nals deteriorates among relatively cheap-to-trade
stocks. We investigate whether return predictability
through machine learning methods varies over time.
Specifically, we first link trading profits to variations
in market conditions and then examine predictable
patterns over the most recent years.

4.1. Analysis Based on Portfolio Returns

Economic theory implies that less trading friction and
more arbitrage activity should improve price effi-
ciency. Consequently, anomaly-based trading strat-
egies should be more profitable in the presence of
binding limits to arbitrage. The existing evidence con-
cerning many anomalies has typically supported this
expectation. First, Stambaugh et al. (2012) find stron-
ger market anomalies following high-sentiment peri-
ods. They attribute the sentiment effect to binding
short-sale constraints, which are particularly promi-
nent during episodes of high investor sentiment,
because stock prices reflect the views of more optimis-
tic investors in the presence of heterogeneous beliefs
about fundamental values (Miller 1977). Avramov
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et al. (2018) further show that market-wide sentiment
and firm-level financial distress jointly drive overpric-
ing among stocks and corporate bonds. Second, a
great deal of theoretical work predicts that higher vol-
atility reduces the liquidity-provision capacity of mar-
ket makers because of tightened funding constraints
and reduced risk appetite (Gromb and Vayanos 2002,
Brunnermeier and Pedersen 2009, Adrian and Shin
2010). Thus, anomaly payoffs (especially those related
to liquidity provision) could increase because of
liquidity dry-up during times of financial market tur-
moil. Finally, Chordia et al. (2014) find that the recent
regime of increased stock market liquidity is associ-
ated with the attenuation of equity return anomalies
because of increased arbitrage activity.

In our empirical experiments, we examine the pay-
off of machine learning portfolios in subperiods
depending on the state of investor sentiment, market
volatility, and market liquidity. We consider the fol-
lowing market state variables: (1) investor sentiment,
defined as the monthly investor sentiment from Baker
and Wurgler (2007) (SENT), or the aligned investor
sentiment using the partial least squares approach
from Huang et al. (2015) (PLS SENT)*; (2) realized
market volatility (MKTVOL), defined as the standard
deviation of daily CRSP value-weighted index returns
in a month; (3) implied market volatility (VIX),
defined as the monthly VIX index of implied volatil-
ities of S&P 500 index options®’; and (4) market illi-
quidity (MKTILLIQ), defined as the value-weighted
average of stock-level Amihud (2002) illiquidity for all
NYSE/AMEX stocks in a month (Avramov et al.
2016). We divide the full sample into two subperiods,
that is, high versus low investor sentiment (aligned
investor sentiment, realized market volatility, implied
market volatility), according to the median breakpoint
of SENT (PLS SENT, MKTVOL, VIX) over the entire
sample period. Unlike other market state variables,
we obtain the median breakpoint for market illiquid-
ity in the pre- and post-2001 periods separately, as the
decimalization in January 2001 considerably reduced
trading costs.

We repeat the portfolio analysis described before
and sort stocks into decile portfolios according to
machine learning signals. We compute the value-
weighted holding period return for each decile portfo-
lio and implement a zero-cost trading strategy by tak-
ing long positions in the top decile of stocks and short-
ing stocks in the bottom decile. We report the results
for the full sample and subsamples that exclude
microcaps, nonrated firms, and credit rating down-
grades. For brevity, we present only FF6-adjusted
returns in the long-short trading strategy, whereas
our findings are robust to alternative performance
measures, such as raw returns and various risk-
adjusted returns, which are documented previously.

We tabulate the results in Table 7, where Panel A
shows the results for portfolios sorted by the NN3-
predicted returns (GKX), Panel B shows those for
portfolios sorted by the risk loadings on the SDF
(CPZ), Panel C shows those for portfolios sorted by
the IPCA-predicted returns (KPS), and Panel D shows
those for portfolios sorted by the CA2-predicted
returns (Gu et al. 2021). Starting with Panel A, several
findings are worth noting. First, the long-short trading
profit across all stocks is significant at the 5% level in
all subperiods except for the low-VIX period. The
investment strategy is also more profitable during
periods of high investor sentiment, high market vola-
tility, and low market liquidity. Second, among all
market state variables, both realized and implied mar-
ket volatility play an important role in explaining
time-varying return predictability. The value-
weighted FF6-adjusted return is 0.64% (statistically
insignificant at 0.22%) per month at times of low
MKTVOL (VIX) and dramatically increases to 1.28%
(1.66%) at times of high MKTVOL (VIX), while the full
sample average is 0.92% from Table 1, Panel A. Third,
if we focus on the subsamples excluding microcaps or
nonrated firms, the investment strategy remains more
profitable during periods of high market volatility (in
terms of both realized and implied volatility). Finally,
considering the subsample excluding credit rating
downgrades, none of the subperiods displays signifi-
cant long-short trading profit at the 5% level. This last
finding reinforces the concept that after excluding dis-
tressed firms around credit rating downgrades, the
GKX signal does not deliver meaningful FF6-adjusted
returns, that is, the full sample average is statistically
insignificant at 0.20% per month (Table 1, Panel B).

In Panel B, decile portfolios are sorted by risk load-
ings on the SDF (CPZ). For the full sample, we
observe significant long-short trading profit at the 5%
level in all subperiods, and the investment strategy
outperforms during periods of high investor senti-
ment, high market volatility (in terms of both realized
and implied volatility), and low market liquidity. In
line with the full sample results shown in Table 3,
return predictability deteriorates upon imposing eco-
nomic restrictions, and only two subperiods display
significant long-short trading profit at the 5% level.

In Panel C, the trading strategy based on the IPCA
signal remains profitable at the 5% level for the full
sample as well as for the subsample excluding micro-
caps in all subperiods except for the low-PLS SENT
period. More importantly, the trading profit based on
IPCA does not change materially during high limits-
to-arbitrage market states. For instance, the monthly
value-weighted FF6-adjusted return is 0.51% (0.70%)
for the full sample and 0.56% (0.62%) for the subsam-
ple excluding microcaps at times of low (high) limits
to arbitrage (proxied by investor sentiment, market
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Table 7. Performance of Machine Learning Portfolios by Market State

Value-weighted FF6-adjusted returns of machine learning portfolios

SENT PLS SENT MKTVOL VIX MKTILLIQ
Low High Low High Low High Low High Low High
Panel A: Sorted by NN3-predicted returns
Full sample 0.732%%* 0.879** 0.684** 1.041%**  0.641** 1.283%** 0.218 1.662%**  0.736™*  1.075%**
(3.00) (2.40) (2.27) (2.82) (2.34) (3.96) 095)  (4.16) (2.70) (3.36)
Nonmicrocaps 0.334 0.095 0.250 0.265 0.062 0.814**  —0.050 0.747** 0.222 0.461
(1.45) (0.29) (0.89) (0.82) (0.26) (2.87) (-020)  (2.03) (0.84) (1.51)
Credit rating sample 0.389 0.274 0.335 0.452 0.095 0.896*** 0.025 0.808* 0.512* 0.351
(1.49) (0.91) (1.19) (1.45) (0.44) (2.93) 011)  (1.96) 1.97) (1.15)
Nondowngrades 0.355 -0.161 0.225 0.111 0.054 0.597* -0.060 0.582 0.294 0.120
(1.43) (—0.50) (0.81) (0.33) (0.23) (1.70) (—0.24) (1.25) (1.21) (0.36)
Panel B: Sorted by risk loadings
Full sample 1.372%** 2.453**  1.383*** 2198 1.352%*  2.364*** 0.898**  2.451***  1.150**  2.128***
(3.83) (3.78) (3.50) (3.87) (3.64) (4.09) (230)  (3.80) (2.73) (4.53)
Nonmicrocaps 0.512** 0.681 0.151 0.824* 0.423 0.665 0.321 0.386 0.527 0.432*
(2.14) (1.60) (0.54) (2.44) (1.41) (1.62) (1.14) (101 (1.45) (1.76)
Credit rating sample  0.269 0.658 0.244 0.500 0.448 0.527 0.097 0.337 0.691 0.073
(0.84) (1.35) (0.61) (1.29) (1.12) (1.12) 031)  (0.69) (1.63) (0.20)
Nondowngrades 0.329 0.945* 0.411 0.685* 0.453 0.699 0.031 0.651 0.847* 0.155
(0.93) (1.79) (0.87) (1.66) (0.96) (1.45) 0.09)  (1.19) (1.86) (0.39)
Panel C: Sorted by IPCA-predicted returns
Full sample 0.558** 0.667** 0.363* 0.753**  0.590*** 0.694*  0.440%* 0.763** 0.603** 0.645%**
(2.46) (2.03) (1.68)  (2.64) (3.57) (2.56)  (2.60) (2.23) (2.39) 2.78)
Nonmicrocaps 0.606%** 0.615** 0.387* 0.742%%  0.566** 0.636*  0.478** 0.647%* 0.759*** 0.463**
(3.06) (2.15) 1.96)  (2.94) (3.28) (2.59)  (2.98) (2.25) (3.34) (2.23)
Credit rating sample ~ 0.647*** 0.512* 0.466**  0.667** 0.533*** 0.653*  0.498** 0.649** 0.7827%* 0.447*
(2.82) (1.66) (2.08)  (2.39) (2.97) (251)  (2.56) (2.14) (3.18) (1.96)
Nondowngrades 0.535** 0.326 0.386 0.429 0.378** 0.451 0.478** 0.325 0.583** 0.292
(2.37) (1.10) (1.64)  (1.55) (2.04) (1.60) (223 (0.96) (2.22) (1.26)
Panel D: Sorted by CA2-predicted returns
Full sample 0.748*** 0.617 0.673**  0.869**  0.634** 0.606 0.453* 0.910** 0.359 0.787**
(2.70) (1.41) Q41)  (.17) (2.34) (L61)  (1.75) (2.04) (1.51) (2.14)
Nonmicrocaps 0.584** 0.064 0.224 0.471 0.537** 0.254 0.524** 0.122 0.292 0.275
(2.55) (0.21) (0.89)  (1.50) (2.13) 0.79)  (2.28) (0.33) (1.13) (1.03)
Credit rating sample  0.304 -0.055 0.016 0.287 0.531 -0.074 0.508* -0.300 -0.102 0.263
(1.15) (~0.15) 0.05)  (0.78) (1.49) (-0.19)  (1.69) (-0.67)  (=0.30) (0.81)
Nondowngrades 0.204 —-0.218 —-0.173 0.153 0.376 —-0.170 0.193 —-0.248 —-0.331 0.245
(0.73) (-0.54)  (-055)  (0.40) (1.30) (-045)  (0.73) (-054)  (-0.89) (0.84)

Notes. In Panel A, at the end of each month ¢, stocks are sorted into deciles according to their NN3-predicted returns (Gu et al. 2020). We report
the value-weighted Fama-French six-factor-adjusted returns for month ¢ +1 for the strategy of going long (short) on the highest (lowest)
expected return stocks in various subperiods, including when investor sentiment (SENT), aligned investor sentiment (PLS SENT), market
volatility (MKTVOL), implied market volatility (VIX) and market illiquidity (MKTILLIQ) are high (above median) and low (below median) in
month f. We obtain the median breakpoint for market illiquidity in the pre- and post-2001 periods separately. We report the results for the full
sample and for subsamples that exclude microcaps, nonrated firms, and credit rating downgrades. Panels B to D report similar statistics when
decile portfolios are sorted by the risk loadings on the stochastic discount factor (Chen et al. 2020), IPCA-predicted returns (Kelly et al. 2019), and
CA2-predicted returns (Gu et al. 2021), respectively. Online Appendix A provides detailed definitions for each variable. Newey-West adjusted ¢

statistics are shown in parentheses.
*,**, and ***Significant at the 10%, 5%, and 1% levels, respectively.

volatility, and market liquidity). Shifting the focus to
subsamples excluding nonrated firms and credit rat-
ing downgrades, the IPCA signal outperforms in mar-
ket states with low limits to arbitrage. The monthly
value-weighted FF6-adjusted return is 0.59% (0.59%)
when we exclude nonrated firms and 0.47% (statisti-
cally insignificant at 0.37%) when we exclude dis-
tressed firms around credit rating downgrades at
times of low (high) limits to arbitrage.

In Panel D, unlike the GKX and CPZ methods, the
CA signal shows mixed evidence across market states
for the full sample. Considering the subsample exclud-
ing microcaps, the CA signal generates higher profit
during periods of low limits to arbitrage. Unreported
results further suggest that machine learning portfolios
display similar turnover across various market states.

Opverall, we find that GKX and CPZ signals predict
cross-sectional returns across all stocks, especially
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during periods of high investor sentiment, high mar-
ket volatility, and low market liquidity—consistent
with the economic concept of limits to arbitrage. In
contrast, the machine learning signals generated from
conditional beta pricing models, that is, IPCA and CA
models, display low time series variation in trading
profits and could even outperform in low limits-to-
arbitrage market states. However, restricting the
investment universe to cheap-to-trade stocks attenu-
ates return predictability across all market states, and
the payoff of deep learning signals (GKX, CPZ, and
CA) often becomes statistically insignificant on a risk-
adjusted basis over the entire sample period and in
various market states.

4.2. Time Series Regressions

We next perform regression analysis to jointly co-
nsider all market state variables. We also explicitly
control for other proxies for market states and macro-
economic conditions. Because the return predictability
of deep learning signals weakens considerably in sub-
samples with economic restrictions, we focus on the
full sample including all stocks to conduct time series
analysis.

First, we examine whether the payoff of machine
learning portfolios varies by market state. Specifically,
we estimate the following monthly time series regres-
sion:

HML; = ag + p,High SENT;_ + B,High MKTVOL;_4
+ B,High MKTILLIQ; 1 + B,M;_1 + c{F; + ¢4 F;
x High SENT;_1 + c4F; x High MKTVOL;_
+ cyFy X High MKTILLIQ;-1 + e
1)
where HML; refers to the value-weighted return on
the high minus low decile in machine learning portfo-
lios across all stocks in month t. High SENT,_; refers
to a dummy variable that takes a value of one if the
Baker and Wurgler (2007) investor sentiment (SENT)
is above the median over the entire sample period
and zero otherwise; High SENT;_; is further replaced
with High PLS SENT;_;, defined as a dummy variable
that takes a value of one if the aligned investor senti-
ment from Huang et al. (2015) is above the median
over the entire sample period and zero otherwise;
High MKTVOL;_; refers to a dummy variable that
takes a value of one if the market volatility (MKTVOL)
is above the median over the entire sample period
and zero otherwise; High MKTVOL;; is further
replaced with High VIX;_;, defined as a dummy varia-
ble that takes a value of one if the implied market vol-
atility (VIX) is above the median over the entire sam-
ple period and zero otherwise; and High MKTILLIQ; 4
refers to a dummy variable that takes a value of one if
market illiquidity (MKTILLIQ) is above the median

and zero otherwise. We obtain the median breakpoint
for market illiquidity in the pre- and post-2001 periods
separately. All market state variables are defined as in
Table 7; M;_; refers to a set of other proxies for market
conditions: down market state (DOWN), defined as a
dummy variable that takes the value of one if the
CRSP value-weighted index return is negative and
zero otherwise; term spread (TERM), defined as the
difference between the average yield of 10-year Treas-
ury bonds and three-month T-bills; and default spread
(DEF), defined as the difference between the average
yield of bonds rated BAA and AAA by Moody’s. The
vector F stacks the six common risk factors identified
in Fama and French (2018), including the market fac-
tor (MKT), the size factor (SMB), the book-to-market
factor (HML), the profitability factor (RMW), the
investment factor (CMA), and the momentum factor
(MOM). We also report Newey and West (1987)
adjusted t statistics with four lags.

The results are presented in the online appendix,
Table IA8. In Panels A and B, decile portfolios are
sorted by the NN3-predicted returns (GKX) and the
risk loadings on the SDF (CPZ), respectively. We find
that the trading profit based on the GKX signal is
higher during periods of high market volatility in
terms of both realized and implied volatility after con-
trolling for investor sentiment, market liquidity, mac-
roeconomic variables, and risk factors (models 1 to 4).
Models 5 to 8 further consider the time-varying factor
risk exposures by interacting the six common risk fac-
tors with market state variables. We continue to find
that the trading profit based on the GKX signal is
higher during high-VIX periods. Similarly, the long-
short portfolio payoff based on the CPZ signal is
higher during periods of high investor sentiment,
high implied market volatility, and low market liquid-
ity (models 1 to 4). In addition, the implied market
volatility appears to be the most informative market
state variable and is highly significant in all specifica-
tions after controlling for macroeconomic variables
and time-varying risk exposures. Overall, market-
wide predictive variables capture a large variation in
investment payoffs based on GKX and CPZ signals.

In Panels C and D, decile portfolios are sorted by
the IPCA-predicted returns (KPS) and the CA2-
predicted returns (Gu et al. 2021), respectively. The
findings are in line with the portfolio analysis shown
in Table 7, that is, the trading profits generated from
conditional beta pricing models do not exhibit signifi-
cant time series variation across market states after
controlling for macroeconomic variables and risk fac-
tors as well as time-varying risk exposures.

Overall, this joint predictive regression specification
further reinforces our finding that machine learning
payoffs based on GKX and CPZ signals display
substantial time variation and, more importantly, that
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superior performance characterizes market states that
are associated with high trading frictions.

4.3. Return Predictability in Recent Years

The U.S. equity market has undergone substantial struc-
tural changes since the 2000s, such as the introduction of
decimalization and improved market liquidity, the
greater participation of institutional investors, better
access to a broader range of data, developments in finan-
cial technology, and the adoption of advanced quantita-
tive analysis. Chordia et al. (2014) show that most
anomalies were attenuated after decimalization in Janu-
ary 2001, with the average return and Sharpe ratio from
a trading strategy consisting of 12 anomalies more than
halved.

In the presence of the growing popularity of exploit-
ing big data and quantitative models in asset manage-
ment, we examine whether machine learning techniques
have remained meaningful in recent years. We repeat
the portfolio analysis described before and sort stocks
into decile portfolios according to machine learning sig-
nals. We implement a zero-investment trading strategy
by taking long positions in the top decile of stocks and
shorting stocks in the bottom decile and compute the
holding period return in the post-2001 period. We report
only the value-weighted performance of long-short port-
folios in Table 8 for brevity, where Panel A shows the
results for portfolios sorted by the NN3-predicted
returns (GKX), Panel B shows those for portfolios sorted
by the risk loadings on the SDF (CPZ), Panel C shows
those for portfolios sorted by the IPCA-predicted returns
(KPS), and Panel D shows those for portfolios sorted by
the CA2-predicted returns (Gu et al. 2021).

Our main findings from 1987 to 2017 remain intact
in the post-2001 period for the GKX, IPCA, and CA
signals. The value-weighted long-short portfolio
return based on the GKX (IPCA, CA) signal across all
stocks is significant at 1.57% (0.88%, 1.65%) per month
and 1.18% (0.69%, 1.12%) after adjusting for the FF6
model. The economic magnitude is also comparable
with that for the entire sample period, that is, 1.56%
(0.95%, 1.16%) for raw returns and 0.92% (0.62%,
0.75%) for the FF6-adjusted returns in Tables 1 and 4.
Moreover, the machine learning signal continues to
predict the cross-section of stock returns among non-
microcaps and rated firms in recent years. Shifting the
focus to the most restrictive subsample that excludes
credit rating downgrades, the FF6-adjusted return is
significant only at the 5% threshold for the IPCA
method.™

As shown in Panel B of Table 8, the value-weighted
long-short portfolio return based on the CPZ signal
across all stocks is significant at 1.86% per month and
1.02% after adjusting for the FF6 model. The economic
magnitude is slightly lower than that for the 1987 to
2016 period, that is, 2.18% for raw returns and 1.87%

for FF6-adjusted returns (Table 3, Panel A), but the
recent performance is comparable with other deep
learning signals. Imposing economic restrictions fur-
ther weakens out-of-sample return predictability in
recent years, and we do not detect significant FF6-
adjusted returns in any of the three subsamples.”

The overall evidence suggests that machine learning
signals continue to predict cross-sectional stock returns
in recent years for the full sample. Unlike for individual
anomalies, there is no vast drop in trading profits of
machine learning signals. This supports the concept
that machine learning methods can combine multiple,
presumably weak, signals into a meaningful set of
information. Conversely, anomalous return patterns
are still confined within difficult-to-arbitrage stocks,
and thus, practitioners should remain cautious in using
machine learning algorithms for real-time trading.

5. Economic Foundations of

Machine Learning
Cochrane (2011) points out that traditional regression
analysis and portfolio sorts could be insufficient for han-
dling a large number of predictive variables. In response,
machine learning offers a natural way to accommodate a
high-dimensional predictor set and flexible functional
forms and employs “regularization” methods to select
models and mitigate overfitting biases. However, deep
learning models are opaque in nature and are often
referred to as “black boxes.” As emphasized by Karolyi
and Van Nieuwerburgh (2020), understanding the rele-
vant economic mechanisms is essential for machine lear-
ning tools, especially if the goal is robust and credible
out-of-sample predictability.

In this section, we focus on the full sample and pro-
vide evidence on the economic driving forces of
return predictability in machine learning methods.
Specifically, we examine whether stocks with similar
machine learning signals also share other characteris-
tics that predict future returns. Examining the com-
mon features of stocks selected by machine learning
methods allows us to determine whether the invest-
ment decision is economically interpretable. We fur-
ther control for industry benchmarks and investigate
the source of return predictability.

5.1. Stock Characteristics of Machine
Learning Portfolios

At the end of each month ¢, stocks are sorted into dec-
iles per machine learning signal. We then compute the
equal-weighted average of a comprehensive set of stock
characteristics at the end of month t for each portfolio.
Most stock characteristics come from the firm-level pre-
dictors used in GKX, including Absolute Accruals,
Log(Age), Assets Growth, Beta, Book-to-Market, AShares
Outstanding, Corporate Investment, Dividend-to-Price,
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Table 8. Performance of Machine Learning Portfolios in Recent Years
Return CAPM FFC+PS FF5 FF6 SY
Panel A: Value-weighted returns to investment strategies sorted by NN3-predicted returns
Full sample 1.568%** 2.012%%* 1.555%** 1.096*** 1.181%** 0.699**
(3.07) (4.63) (5.20) (3.95) (4.32) (2.27)
Nonmicrocaps 1.106** 1.583*** 1.116%** 0.592** 0.687*** 0.276
(2.27) (3.97) (4.28) (2.19) (2.88) (0.93)
Credit rating sample 1.182** 1.635%** 1.165%** 0.700** 0.803*** 0.288
(2.37) 4.22) (4.04) (2.36) (3.14) (0.87)
Nondowngrades 0.796* 1.188%** 0.768*** 0.454 0.545% —0.037
(1.82) (3.15) (2.67) (1.58) (1.90) (-0.11)
Panel B: Value-weighted returns to investment strategies sorted by risk loadings
Full Sample 1.864*** 1.759%** 1.428%** 1.060%* 1.021** 1.407%**
(3.36) (2.98) (3.33) (2.27) (2.40) (2.78)
Nonmicrocaps 0.954** 0.968** 0.625** 0.157 0.216 0.338
(2.40) (2.35) (2.08) (0.54) (0.75) (1.06)
Credit Rating Sample 0.759* 0.725* 0.400 0.114 0.165 0.237
(1.87) (1.67) (1.13) (0.33) (0.48) (0.63)
Nondowngrades 0.765% 0.786* 0.453 0.168 0.203 0.347
(1.87) (1.82) (1.30) (0.48) (0.59) (0.90)
Panel C: Value-weighted returns to investment strategies sorted by IPCA-predicted returns
Full Sample 0.881*** 0.967*%* 0.775%%* 0.643** 0.691*** 0.321
(3.95) (4.32) (3.81) (2.58) (3.31) (1.19)
Nonmicrocaps 0.732%** 0.862*** 0.682*** 0.532** 0.578*** 0.216
(3.47) (4.19) (3.76) (2.38) (3.06) (0.92)
Credit Rating Sample 0.830%** 0.953*** 0.763*** 0.661*** 0.714%** 0.279
(3.68) (4.31) (3.65) (2.61) (3.28) (1.03)
Nondowngrades 0.643*** 0.724*** 0.505** 0.475* 0.531** 0.088
(2.86) (3.05) (2.34) (1.76) (2.35) (0.31)
Panel D: value-weighted returns to investment strategies sorted by CA2-predicted returns
Full Sample 1.651*** 1.753*** 1.301*** 1.065*** 1.122%** 0.840**
(3.96) (4.08) (4.22) (3.11) (3.38) (2.46)
Nonmicrocaps 1.388*** 1.591*** 1.083*** 0.647** 0.760*** 0.419
(3.30) (3.67) (3.95) (2.01) (2.84) (1.40)
Credit Rating Sample 1.245%* 1.358%** 0.784*** 0.436 0.566* 0.179
(2.85) (3.01) (2.64) (1.12) (1.80) (0.50)
Nondowngrades 0.964** 1.072% 0.566** 0.265 0.363 0.095
(2.35) (2.54) (1.99) (0.92) (1.40) (0.30)

Notes. In Panel A, at the end of each month ¢, stocks are sorted into deciles according to their NN3-predicted returns (Gu et al. 2020). We report
the value-weighted returns for month ¢ + 1 for the strategy of going long (short) on the highest (lowest) expected return stocks in the post-2001
period. Portfolio returns are further adjusted by the CAPM, Fama-French-Carhart four-factor and Pastor-Stambaugh liquidity factor model
(FEC+PS), Fama-French five-factor model (FF5), Fama-French six-factor model (FF6), and Stambaugh-Yuan four-factor model (SY). We report
the results for the full sample as well as for subsamples that exclude microcaps, nonrated firms, and credit rating downgrades. Panels B to D
report similar statistics when decile portfolios are sorted by the risk loadings on the stochastic discount factor (Chen et al. 2020), IPCA-predicted
returns (Kelly et al. 2019), and CA2-predicted returns (Gu et al. 2021), respectively. Newey-West adjusted ¢ statistics are shown in parentheses.

*,**, and *** Significant at the 10%, 5%, and 1% levels, respectively.

Gross Profitability, idiosyncratic return volatility (Idio-
Vol), Log(Illiquidity), Leverage, 12M Momentum, return
on assets (ROA), and return on equity (ROE). We
also consider other firm characteristics, such as Log(-
Price), Log(Size), IM Return, the percentage of rated
firms (%Rated), Credit Rating, Analyst Coverage, Ana-
lyst Dispersion, and standardized unexpected earnings
(SUE). We obtain analyst forecast data from the Institu-
tional Brokers” Estimate System (I/B/E/S). Online

Appendix A provides detailed definitions of each
variable.

Although most stock characteristics examined in
this section are also used as input variables for the
machine learning models, whether the same fea-
tures are preserved in machine learning portfolios is
unclear. For instance, if machine learning portfolios cap-
ture mainly the nonlinearities and interaction effects,
the stocks identified by machine learning signals may
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not align with those in standard anomaly-based trading
strategies relying on a single characteristic.

The results are presented in Table 9, where Panel A
shows the results for portfolios sorted by the NN3-
predicted returns (GKX) and the risk loadings on the
SDF (CPZ) and Panel B shows the results for portfo-
lios sorted by the IPCA-predicted returns (KPS) and
the CA2-predicted returns (Gu et al. 2021). For brev-
ity, we tabulate only stock characteristics for the bot-
tom and top decile portfolios, as well as the difference
in values between high- and low-decile portfolios
(HML). We report adjusted ¢ statistics from Newey
and West (1987) with four lags. Several findings are
worth noting. First, all machine learning methods
identify stocks in line with most anomaly-based trad-
ing strategies. For instance, stocks in the long posi-
tions of a machine learning-based trading strategy are
typically small, value, illiquid, and old stocks with
low price, low beta, high 11-month return (medium-
term winners), low asset growth, low equity issuance,
low credit rating coverage, and low analyst coverage.
Therefore, despite their opaque nature, machine learn-
ing techniques successfully identify mispriced stocks
with solid economic foundations.*’

Second, there are two notable incidences in which
machine learning signals trade in the opposite direction
of individual anomaly characteristics. First, all machine
learning methods take long positions in stocks with
high corporate investment, which, on an individual
basis, predicts lower future returns on average (Titman
et al. 2004). Second, all machine learning methods
except for CPZ take long positions in stocks with high
idiosyncratic volatility. Future returns may not be lin-
ear in either corporate investment or idiosyncratic vola-
tility and return predictability could be affected by
other related firm characteristics or macro conditions.
As shown by Titman et al. (2004), the negative investment-
return relation is more prominent among firms with
higher cash flows and lower debt ratios. Stambaugh et al.
(2015) also document that the idiosyncratic volatility-
return relation is negative for overpriced stocks but turns
positive for underpriced stocks. Such complex and often
ambiguous patterns in the cross-section highlight the
merits of using machine learning techniques because
they can distill information from a large set of correlated
characteristics.

An advantage of machine learning methods is that
they accommodate high dimensionality and complex
patterns in the data without preselection of truly useful
characteristics and models, hence avoiding the data
snooping problem that challenges the credibility of the
anomaly literature (Harvey et al. 2016, McLean and
Pontiff 2016, Harvey 2017, Hou et al. 2020). Our find-
ings support this concept by showing that machine

learning signals indeed identify mispriced stocks that
are in line with well-established empirical facts without
requiring any prior knowledge. Despite their opaque
nature, machine learning models generate economi-
cally interpretable trading strategies, which is essential
for robust and credible out-of-sample predictability
(Karolyi and Van Nieuwerburgh 2020).

Notably, several other papers also investigate the
economic interpretability of machine learning mod-
els. For instance, Kelly et al. (2019) and Gu et al.
(2020) identify important characteristics according to
their contribution to overall model fit. Cong et al.
(2021) propose an “economic distillation” procedure
that projects complex AI models onto linear modeling
or natural language spaces to identify the dominant
characteristics (including their higher-order terms
and interaction terms). Similar to our approach, Sak
et al. (2021) use a characteristic sort to identify do-
minant features. These studies aim to identify the
influential covariates for the cross-sectional return pre-
dictability and rank all predictors by their importance.
In contrast, we do not implement a horse race across all
predictors in the machine learning model. Instead, we
focus on the ex post interpretability of machine learning
signals and associate them with a list of widely adopted
and economically motivated trading signals. Although
the important characteristics identified in prior work
are model specific, we complement their results by pro-
viding broader implications for the economic interpret-
ability of machine learning methods.

5.2. Intra-Industry vs. Inter-Industry Return
Predictability

Returns on firms within the same industry are highly
correlated, as they could be affected by common tech-
nological shocks, changes in operational and regula-
tory environments, and industry-specific demand and
supply for certain products and services. Our prior
findings suggest that deep learning signals mostly pre-
dict future returns in difficult-to-arbitrage stocks. If
such trading signals capture temporary mispricing and
subsequent correction due to market frictions, matching
similar firms within the same industry provides a natu-
ral framework to control for firm fundamentals and
understand the source of return predictability. Control-
ling for industry benchmarks can also clarify whether
machine learning methods specialize in stock picking or
industry rotation, that is, whether they cluster similar
firms and trade the industry portfolio.

To pursue the analysis, we first implement an
unconditional trading strategy based on the NN3-
predicted return of stock 7 in month t (GKX), denoted
by R;;. We take a $1 long position on stocks that are
expected to outperform the market (market winners),
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Table 9. Stock Characteristics of Machine Learning Portfolios

Panel A: Stock characteristics of machine learning portfolios

Sorted by NN3-predicted returns Sorted by risk loadings
Stock characteristics Low High HML t statistic Low High HML t statistic
Log (price) 2.092 1.386 -0.706*** (~14.63) 1.670 1.304 —0.366*** (-12.89)
Log (size) 5.483 3.613 —-1.870*** (=25.33) 4.646 3.524 —1.123*** (—29.82)
Book-to-market 0.780 1.391 0.612*** (10.62) 0.914 1.353 0.440%** (13.15)
Log (illiquidity) 1.220 3.791 2.571*** (22.70) 2.760 3.911 1.150*** (18.94)
Beta 1.330 1.068 -0.263*** (-6.87) 1.307 1.096 —0.211#** (-11.74)
1M return 0.027 -0.012 —0.039*** (-10.22) 0.145 -0.118 —0.263*** (=37.18)
12M momentum -0.124 0.185 0.309*** (15.64) -0.246 0.083 0.329*** (20.49)
IdioVol 0.076 0.084 0.008*** (4.19) 0.081 0.082 0.001 (1.55)
Absolute accruals 0.103 0.107 0.003 (1.08) 0.108 0.097 —0.011*** (-9.83)
Log (age) 2.171 2.463 0.292%** (9.93) 2.700 2.716 0.016** (2.48)
Assets growth 0.586 0.014 —0.572%** (-11.76) 0.164 0.048 —-0.116*** (-12.76)
AShares outstanding 0.389 0.070 —0.319** (=10.92) 0.158 0.064 —0.094*** (=15.58)
Corporate investment -0.107 0.022 0.129%** (9.03) -0.026 0.001 0.027*** (4.72)
Dividend-to-price 0.012 0.009 —0.003*** (=3.61) 0.009 0.011 0.002#** (6.68)
Gross profitability 0.329 0.354 0.025 (1.57) 0.387 0.420 0.032#** (8.11)
Leverage 1.308 1.832 0.524*** (4.18) 1.340 1.388 0.048 (1.16)
ROA -0.024 —-0.011 0.013*** (5.41) -0.019 —0.009 0.010%** (12.04)
ROE -0.045 -0.017 0.028*** (5.87) —0.039 —-0.017 0.022*** (12.77)
%Rated 0.236 0.093 —0.142%* (-13.48) 0.196 0.102 —0.094*** (-17.53)
Credit rating 11.350 12.047 0.697** (2.44) 12.547 13.036 0.490*** (4.38)
Analyst coverage 4.142 1.432 —-2.710%** (=14.99) 3.022 1.441 —1.581*** (-17.34)
Analyst dispersion 0.049 0.057 0.008 (0.68) 0.050 0.083 0.033*** (2.61)
SUE -0.019 —0.009 0.010%** (3.17) -0.023 -0.016 0.006*** (2.79)

Panel B: Stock characteristics of machine learning portfolios

Sorted by IPCA-predicted returns Sorted by CA2-predicted returns
Stock characteristics Low High HML t statistic Low High HML t statistic
Log (price) 2.301 1.853 —0.449** (—21.81) 1.636 0.951 —0.685%** (—21.54)
Log (size) 5.748 4.067 —1.681%** (=67.77) 4.690 3.255 —1.435%** (-31.52)
Book-to-market 0.871 1.348 0.477*** (15.70) 0.888 1.240 0.352#** (7.01)
Log (illiquidity) 1.108 2.880 1.772%** (50.20) 2.347 4.447 2.100*** (25.37)
Beta 1.142 1.056 —0.086*** (—4.89) 1.423 1.150 —0.273*** (-11.84)
1M return 0.030 -0.028 —0.058*** (-24.57) -0.012 0.015 0.027#** (10.50)
12M momentum —0.085 0.285 0.370%** (21.26) -0.132 —0.056 0.077*** (4.62)
IdioVol 0.068 0.074 0.006*** (8.48) 0.088 0.093 0.004*** (4.40)
Absolute accruals 0.107 0.082 —0.025*** (-19.71) 0.109 0.111 0.003* (1.72)
Log (age) 2.279 2.476 0.197#** (21.21) 2.151 2.284 0.133*** (11.50)
Assets growth 0.542 0.016 —0.526*** (-19.13) 0.423 0.114 —0.310*** (=9.60)
AShares outstanding 0.343 0.050 —0.204*** (-18.38) 0.291 0.139 —0.151*** (-9.96)
Corporate investment -0.068 0.006 0.074*** (9.50) -0.069 -0.012 0.058*** (7.01)
Dividend-to-price 0.014 0.010 —0.004*** (-12.93) 0.011 0.007 —0.004*** (=5.67)
Gross profitability 0.316 0.383 0.066*** (9.95) 0.330 0.329 -0.001 (=0.15)
Leverage 1.054 1.830 0.777*** (11.37) 1.565 1.808 0.243** (2.38)
ROA —0.019 0.005 0.024%** (22.44) -0.025 -0.026 -0.001 (=0.59)
ROE -0.038 0.017 0.055%** (24.02) -0.047 -0.048 -0.001 (-0.62)
%Rated 0.290 0.119 —0.171%** (=35.38) 0.170 0.075 —0.095*** (-12.73)
Credit rating 10.573 11.009 0.436*** (4.46) 12.929 13.920 0.991*** (6.40)
Analyst coverage 4.071 1.930 —2.141%** (—24.91) 3.248 1.136 —2.112%* (-13.47)
Analyst dispersion 0.085 0.070 -0.014 (-1.24) 0.057 0.010 -0.047% (-1.97)
SUE —-0.012 -0.001 0.012%** (12.45) -0.025 -0.022 0.002 (0.98)

Notes. InPanel A, at the end of each month ¢, stocks are sorted into deciles according to their NN3-predicted returns (Gu et al. 2020). We report,
for the bottom and top decile portfolios, the contemporaneous equal-weighted average Log(price), Log(size), Book-to-market, Log(illiquidity),
Beta, 1M return, 12M momentum, IdioVol, Absolute accruals, Log(age), Assets growth, AShares outstanding, Corporate investment, Dividend-
to-price, Gross profitability, Leverage, ROA, ROE, %Rated, Credit rating, Analyst coverage, Analyst dispersion, and SUE, as well as the
difference in values between high and low decile portfolios (HML). We also report similar statistics when decile portfolios are sorted by the risk
loadings on the stochastic discount factor (Chen et al. 2020). Panel B reports similar statistics when decile portfolios are sorted by the IPCA-
predicted returns (Kelly et al. 2019) and CA2-predicted returns (Gu et al. 2021). Online Appendix A provides detailed definitions for each
variable. Newey-West adjusted f statistics are shown in parentheses.

*,** and *** Significant at the 10%, 5%, and 1% levels, respectively.
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A

that is, Iii,t — R, >0 and $1 short position on stocks
that are expected to underperform the market (market
losers), that is, ﬁi,t - Iim,t <0, where ﬁm,t refers to the
equal-weighted average of R;; across all stocks in the
market. That is, R,,; = N%Zf\:f'lﬁi,h where N; refers to
the number of stocks in the market. We hold the port-
folio over the next month. The winner minus loser
profit from the unconditional strategy at month t+1,
denoted as WMLy, is given by

1 N
WMLy = A D Rit = Rup)Ripe1, 2)
ti=1
§ REA R
H; = EZ IRit = Rl 3)
i=1

where R;;41 refers to the return of stock i in month
t+1, and all other variables are previously defined.
The portfolio weighting scheme is similar to that in
Nagel (2012), and the long-short portfolio includes all
stocks in the investment universe. The weight of each
stock is proportional to the stock’s NN3-predicted
return on a market-adjusted basis, with higher weights
for better performers in the long leg and more negative
weights for worse performers in the short leg. The
investment in each security is scaled by the inverse of
the sum of absolute deviations of stock returns from
the market average so that the strategy is $1 long in
market winner stocks and $1 short in market loser
stocks. This unconditional strategy also provides a
robustness check of our main results, where we focus
only on extreme decile portfolios to construct a long-
short strategy rather than on all investable stocks.

Next, as in Hameed and Mian (2015), we decom-
pose the unconditional strategy into two components.
In particular, Equation (2) can be rewritten as follows:

1 A A A
WMLy = H Z(Ri,t =Rt + Rjr = Ry p)Rip

i=1

1N

= ﬁt ;(Ri,t - Rj,t)Ri,t+1
1N

to D Rjt = Rup)Rips1 (4)
t =1

1 &

A ;(ﬁi,t = Ri)R 1

1 &5 5
to > (Rjt = Ryt)N;eR; 41
t j=1

where léj,t refers to the equal-weighted average of R;,
across all stocks in industry j. That is, R; =4

T it

fi’l' R;:, where N, refers to the number of stocks in
industry j. L; refers to the number of industries, and
Rjt41 refers to the equal-weighted average of stock

returns across all stocks in industry j in month ¢+ 1.

That is, Rj1 :ﬁ fifl’ Rit41. All other variables are
defined as in Equation (2).*'

The first term in Equation (4) represents returns to
an intra-industry strategy that buys stocks that are
expected to outperform the industry portfolio (indus-
try winners), that is, R it— ﬁj,t > 0, and sells stocks that
are expected to underperform the industry portfolio
(industry losers), that is, Iii,t—ﬁj,t <0. The second
term represents returns to an inter-industry strategy
that buys the industry portfolio if the industry is
expected to outperform the overall market (winner
industries), that is, ﬁj,t - ﬁm,t >0, and sells the indus-
try portfolio if the industry is expected to underper-
form the overall market (loser industries), that is,
IQJ-,[ - ]Qm,t < 0. To scale the investment in each compo-
nent to $1 long and $1 short, we multiply the profits
by the factor of proportionality as follows:

HTN TRA 1 N;

WMLy =~ —— o SRy = Rj)Ri 1
H; HINTRA ; i )R
HINTER 1 L, R
~—17  1JINTER (R it — R, ,t)N‘,tR',t+1 (5)
H, HINTER ; ) )N
Hl{NTRA INTRA H{NTER INTER
= Ht X WMLt+] + Tt X WMLH—l ;
INTRA 1 ul ) 5
7 =5 DRy =Ry, (6)
i=1
L
HNTER Z LSRR, N, 7
; —ZZ| jt = R tINj, (7)
j=1

where all variables are defined as in Equations (2) and
(4). In particular, the winner minus loser profit from
the intra-industry strategy at month ¢ +1, denoted as
WMLINIRA g given by

t+1

1T & s
WML = INTRA Zl(Ri,t = Rjt)R 1. ®)
: i=

Similarly, the winner minus loser profit from the inter-
industry strategy at month ¢ + 1, denoted as WMLITER,
is given by

1 &5 s

WMLE'\_]{ER = W Z;(R],t - Rm,t)N',tR',t+1 . (9)
]:

As shown in Equation (5), the unconditional reversal

profit (WML1) is a weighted average of WMLITRA

and WMLYTER, and the weights depend on the scaling

INTRA
factors for the different strategies, that is, H*Hf and
H{NTER

H -

The results are tabulated in Table 10, where Panel A
shows the results for the full sample and subsample
excluding microcaps and Panel B shows those for the
subsamples excluding nonrated firms or credit rating
downgrades. In Panels Al and Bl, we report the



Avramov, Cheng, and Metzker: Machine Learning vs. Economic Restrictions
Management Science, 2023, vol. 69, no. 5, pp. 2587-2619, © 2022 INFORMS

2613

(L¥'%) #S¥) (18%) (86'S) (T9%) (12°9) (¥02) (68°0) (€5°0) (9%'2) #1o) (6£7)
+#:606°0 ##:G9€°0 #5080 #8490 #8840  «x6€9T  £x14T0 0600 £50°0 #8470 #x98€°0 #:xC8E'T IOUUIM
(€9°€) (82€) (16°0) (162) (52°0) #¥©) (gz0-) (0gz-) (£97) (82£'¢-) (TTv-) (8£°0)
#:CF9°0 #x:LLE°0 FSTO  +x:50€0 0700  «xI9T'T GG0'0—  «80€0— #:x£59°0— #:867°0~ 21160~ ££€°0 19S0]
j30Aed Teuonrpuodun :1g PUeJ
XS 944 GId  Sd+Ddd INAVD wmnay XS 941 G Sd+Ddd NAVD w3y Suey]
S9peISUMOPUON] ordures Suner y1pa1d
(papnyoxa seperdumop pue odwes Suner 31pa) surnjar padrpaid-gNN £q PaiIos Sor3ajens JUsISIAUL 0 SUINIIY :f [PUeJ
(65°1-) (e7'1-) #To) (88°0) (V7] (9% (£€0-) (6%°0) (zsD (91D (zT©) (zT9) H/ qaaH
6410~ 61T°0— 9200 080°0 #:05€°0 #SLT0 ££0°0— 800 6V1°0 £9ET°0 #:x61€°0 #x£62°0 X yainr TAM
(1%7'1-) (z€1-) (1€°0) (G6°0) (0£2) (t4720) (91°0-) (£9°0) (191 (161 (6¥°€) (97°¢)
14T°0- 61°0- 1900 FST°0 #x¢G29°0 #9050 9€0°0— 9110 9/£°0 £91€°0 #5x6€2°0 #5x£89°0 wazng TAM
(TT°0) (62£°0-) (61°0-) (18°0) (6¥'1) (Fev) (€50 #¥0) (g0 (¥ (98°1) (€6¢)
1100 650°0— G10°0— 890°0 020 #P8T'T #9€7°0 #+CLE0 #C9€0 #+8G€°0 £€0%°0 #x8GE°T ISUUTA
(G6'1) (92'1) (2¥0-) (9£0-) (z€7-) (802 1o (0s°1) (900-) (1€°0) (08'1-) (66'1)
+C8T0 €10 9/0°0— 980°0— #F6€0— #8290 #CLV0 9520 G10°0— 00 «0€€°0— #0290 19S07]
jpoAed Ansnpur-1ojuy gy [oueJ
(1£70) (eg€) (62%) #9°7) (z8°9) (69°€) (19'2) (€52) (69'8) (£6°8) (86'6) (8£'9)
HA\,W\N_._.Z_E
#:xCLE0 #:00€°0 #5x6CT 0 ##+88G°0 #5:0£8°0 #x679°0 #xx€9'T 291G T #9161 #exCP9'T #:x189°T #:x61G°T X yyrng TAM
(260 (zee) (€Tv) (0£%) (189) (69°€) (89°2) (85°2) (€£8) (298 (06'6) (628
«F0F 0 #5x6€€°0 #5x667°0 #x8£9°0 #x120°T #5xCSL°0 #xxC08'T #xGL9'T #x829°T #6181 #2981 #x989'T varng TAM
(¢6¢) (T0°¢) #9520 (€rd) #52) (6£7%) (16%) (16'%) (1e%) (61°9) (99°€) (€09
***Oﬂm.o **‘xwmﬁ.o ‘x**whﬁ.o ***wwN.o **@Nmo ***mON.H ***ﬂwm.ﬁ ***how.ﬁ ***NMN.M ***@@N.ﬁ ***mNO.ﬁ ***@@@.ﬁ H@CCMZ
(89:0-) (08'1-) (0£2-) (€9¢-) (Gev-) (8¢'1) Fe1-) (8¢z-) (8z¢-) (8T%-) (Ciaa) (2£0)
$60°0— #GFT0—  5sSTE0— «xs68€0—  xxx169°0— 1750 61T0— #+L9C0— #9970~ xxx€€5°0— #xx 0P8 0— 01€°0 19S07]
jjoked Ansnpur-enuy 17y [pueg
(z6°0) (8¢'1) (T2 (0£€) 92%) (05°¢) (202) ¥ L) (€7'9) (¥T'9) (¢s'9) (zr'9)
F61°0 810 #5570 #6990 #:0CT'T #:816°0 #4:668°T O felog § #xG99'T #:8LL°T #x000'C #::CI8'T TAM
(0£70) (802) (€50) (99¢) (£870) (20°9) (¥0°9) (€0'9) (0£%) (gg9) (£8¢) (€29)
***HmN.O **mmﬁo **ﬂ%ﬁo ***OOM\)AO ***mm*.o ***@@Mtﬁ ***@@ﬁ.ﬁ ***ﬁmmiﬂ ***BON.M ***@@N.ﬁ ***m@o.ﬂ ***OmO.N H@éﬂ\s
(¢e0) (0£0-) (£9'1-) (167-) (80'%-) (Trm (86°0-) (12'1-) #92-) (66'¢-) (19%-) (09°0)
8500 6200~ $CLT0—  sxx69E€0—  xxel8L0— 0S¥0 €010~ <F0T0- #8570~ 4x:01G0— 242060~ 6£7°0 19S0]
jjoAed Teuonipuodun Iy [pueJ
AS 944 G1d Sd+D24d NAVD wmnyay XS 944 G1d Sd+D244 NAVD wimnjay Suey]
sdedororuruoN ordures [ng

(papnyoxe sdesomru pue spdwes [[ny) sumiar payrpaid-cNN £q paiios sor3ajens JUaWSIAUT 0} SUINIY 1Y [PUe]

UOTNLI)Y 1B} PUe SOT[0J3I0] SUTUILST SUIUDRIA] JO 9OURULIOJIS] 0 |geLl

‘penJesal sIybu |l ‘Ajuo asn feuosied 104 * 2:S0 e ‘€202 AeIN 60 UO [2TZ S 0€2'82T] Aq Bioswioul wou) pepeojumod



Avramov, Cheng, and Metzker: Machine Learning vs. Economic Restrictions

Management Science, 2023, vol. 69, no. 5, pp. 2587-2619, © 2022 INFORMS

2614

“A[PA12adsa1 ‘SPAS] 94, T PUR ‘%G ‘%01 9U I8 JURDYIUSIS 4 PUR ‘4 s

‘sasatjuared uT UMOYS aTe SdoTIsTE]S 7 Pajsnipe 1S9 -A9MAN] “SopeISumop Sunel JIPaId pue SWLI pajeIuou apnpxa jep sajduresqns ayy
10§ sonsneys xeqrus sprodar g pue “sdeoomdmu sapnoxa jeyy afduresqns ayy pue apdures [ny sy 105 synsaz o) spr0dar y [pue (XS) [PPOW I0J0ej-IN0J Uen X -ydnequuejg pue “(9.1,]) [PPOW I0joej-XIs
PudIf-eure] (GJ) [PPOW I01DeJ-dAT YPUdIJ-ewe] (SJ+D4q) [Ppow 1030ey Ayrpmbry ySnequueig-10iseJ pue 1030ej-Ioj Jeyred-puari-ewe NIV a4 £4q paisnipe Iaypmy are suInjal orjojiIoJ
“A3oyens Ansnpur-1ajur oy 10j 1030y 3ul[eds Ay St . HZWI ‘orjoppr0d 3esprews ayy (uriojrediopun) urroyradino 0y pajoadxe are e soroprod Ansnpur ayy ur suonisod (310ys) Suof sexey £391ens
a uyM . TINM 10F SUIma1 g s0dor gy [PuR ] “S9L8a)ens ANSNpUI-ejul pue [EUORIPUOdUN 3U} 10 S1030ef Sutfeds oy o1e H pue . 1 “orogptod Ansnpur aup (wixojrodiepun) wogradino o3
pogoadxe are jeys s3p03s ay ur suonrsod (J10ys) Suoy saxe) £3a3ens By USYM (1 TINM 10§ SUIIaI 1 310dox om 7y [Pued U] (020 Te 30 nD) sumiax pajorpeid-gNIN oy 03 SuTpIodde JoxIew ap
(urrojradopun) urrojradino o3 pajoadxa are yey s303s (19s07) Touurm a ut suontsod (310ys) Suor sesyer A393ens 9y uaym “JIAM 10§ suInjax oy 3odar om 1y Pued uj *(G) uonenby ur pajordop se
‘syuouodwod sumyar (yo TAM) Ansnpur-spur pue (- TINM) Ansnpur-enur ojur uogisodwodsp sjr pue (TAM) A333exs [euORIpUOdUN 3y Woly suImjar A[yuow oy spodar oqe) SNL, ‘970N

(cTz-) (¥'1-) (€T0) (1%°0) (Lo (z8'1) (¢¢0-) (Z¥°0) (89'1) (9¢0) (IT9) (L)
#8020~ Iro- 2200 I€00  #xGSC0 HL1°0 ££0°0— 00 «661°0 #1200 #x 16770 #52/8€°0 H/ yaingH Xy TAM

(coz-) (0¥'1-) (€T0) (6£°0) (1270 (g8'1) (zro-) (09°0) (€£1) (8¥2) (19) (0ge)
#xCEE0— 681°0— 0700 I1S00  #x6£F°0 «0€°0 T°0°0- 060°0 £G9€°0 €070 #9870 ##xG69°0 waig JAM

(152 #10) (0¥2) F2¢) (gs¢) (1£°9) (8¢°0) (ST'1-) (0g'1-) (98°0) (z€1) (zo¥)
#I1€°0 #6410 #9610 520070  susFLS0  5xs9STT €500 01T°0— 921 0— €600 50 #:G6T'T ISUUIA

(G6°¢) (6877) (06°0) (VX)) (€8°0) F27¢) (T¥0) (65'1-) (0gz-) #9¢-) (og'e-) FeD)
#5xCF9°0 #5x69€°0 9GT0  xxx6V€0 GET'0  wsbLTT GZ0°0 0020~ #1670~ #0T€0—  #xx1€9°0— 6670 19S07]

jyoked Ansnpur-iayuy :¢g pPUeJ

(95°0) (cTm (Ci%d)} (¢L0) ((%7%] (£80) (ze0) (61°¢) (z6€) (ge¥) (69°9) (99¢)
890°0 6600 #F0T0  xs8EC0  wsEFFO #FOE0  +€9€°0 #x95€°0 #1160 #x095°0 #xG08°0 #x809°0 H/ vaingH X vang TAM

(9¢0) (¥6°0) (002) (70 (z6'¢) (1% (€10 (80°¢) (68°€) (0TF) (£6°9) (95°¢)
9600 F0T'0 #9€C°0 #69C0  4xxCTS0 #€G€0  wITF0 A s #:x£09°0 #:¥79°0 #:756°0 #+812°0 varng TAM

Fe9) (LL%) (6T%) (829) (Ze%) (£8°9) (8%2) (66°0) (500 (Crard) @1 (z6¢)
#4x69G°0 #x96€°0 #5:L9€°0  2xGGG°0 w690 wI8GT  1:80€°0 2600 £00°0 #0€T0 1¥2°0 2T T ISUUTA

(#0¢) (952 (€6'0) (£82) (88°0) (VX)) (8%°0-) (V4ara) (88C-) (gze-) (89¢-) (zen
***mﬂm.o **ﬁ@NO ﬁﬂﬂo **@%NO hNﬁO ***wNN.ﬁ MOﬁOI **ONM.OI ***ﬁO@.OI *.Ihwﬁﬁdl ***MHBAOI @Om,O meOA

jyohked Ansnpur-enuy :gg pPueg

(z¢L0-) (01°0-) (cem) (€120 (18°¢) (T2 (€7'1) (8¥2) ((4%9)] (0T¥) (0%°9) (9£¢)
LET0— T100— 92T0 #6970  +x:869°0 «82F0 92€0 #86£°0 #0120 #:x0LL°0 #2960 T #:x566°0 TAM
XS 944 61  Sd+Ddd INAVD umyay XS 944 Gdd Sd+Ddd NAVD winjay Suey]

saper3umopuoN ordures Suner y1pai)

(papnyoxa seperdumop pue sdwes Suner 31paid) surnjar pajdrpaid-gNN £q PaiIos sar3ajens JUsWISIAUT 0) SUINIY g [Pue]

(panunuo)) "ol alqeL

‘panJesal sIyBu (e ‘Ajuo asn feuosied 104 T 2i:S0 ® ‘€202 AeIN 60 UO [LTZ S 0€2"82T] Aq Bio'swiojul woly papeojumod



Downloaded from informs.org by [128.230.54.217] on 09 May 2023, at 05:42 . For personal use only, all rights reserved.

Avramov, Cheng, and Metzker: Machine Learning vs. Economic Restrictions

Management Science, 2023, vol. 69, no. 5, pp. 2587-2619, © 2022 INFORMS

2615

returns for winner and loser portfolios obtained using
the unconditional strategy, where winners (losers)
consist of stocks that are expected to outperform
(underperform) the market average according to the
NN3-predicted returns in GKX. We also implement the
trading strategy by taking long positions in winner
stocks and shorting loser stocks. The zero-investment
trading profit is computed as the winner minus loser
portfolio returns (WML). Over the 1987-2017 sample
period, the average long-short portfolio return is a sig-
nificant 1.81% per month across all stocks and 1.55%
after adjusting for the FF6 model. In addition, the raw
return is 0.92% (0.48%) per month, and the FF6-
adjusted return is statistically insignificant for the
subsample excluding microcaps (credit rating down-
grades). This analysis, based on all stocks, confirms our
main findings from the extreme decile portfolios that
machine learning signals weaken drastically in the sub-
set of cheap-to-trade stocks.

In Panels A2 and B2, we report the returns for win-
ner and loser portfolios from the intra-industry strat-
egy, where winners (losers) consist of stocks that are
expected to outperform (underperform) the industry
average according to the NN3-predicted returns. We
also implement the trading strategy by taking long
positions in winner stocks and shorting loser stocks.
The zero-investment trading profit is computed as the
winner minus loser portfolio returns (WMLINTRAY
Panels A3 and B3, we report the returns for winner
and loser portfolios from the inter-industry strategy,
in which winners (losers) consist of industries that are
expected to outperform (underperform) the market
average according to the NN3-predicted returns. We
implement the trading strategy by taking long posi-
tions in winner industries and shorting loser indus-
tries. The zero-investment trading profit is computed
as the winner minus loser portfolio returns
(WMLINTER). We also report the scaled results, that is,
WMLINTRA 5 FINTRA /11 3§ WMLINTER 5 {INTER /.
and they add up to WML, as shown in Equation (5).

Several findings are worth noting. First, the intra-
industry strategy delivers substantially higher returns
than the inter-industry strategy. As shown in Panels
A2 and A3, the intra-industry strategy (WML™"
TRA S HNTRA /H) accounts for 84% (ie., 1.52% of
1.81%) of the unconditional payoff in raw returns and
93% of that in risk-adjusted returns across all perform-
ance measures for the full sample. Meanwhile, the
inter-industry strategy (WML™NTR x HNTER /H) acco-
unts for the remaining 16% (i.e., 0.29% of 1.81%) of the
unconditional payoff in raw returns and 7% of that in
risk-adjusted returns across all performance measures.
All risk-adjusted returns are highly significant for the
intra-industry strategy, whereas only one of five risk-
adjusted returns is significant at the 5% level for the
inter-industry strategy. A similar pattern also holds

for the three subsamples with economic restrictions.
This finding implies that the GKX method emphasizes
stock selection more than industry rotation.

Second, the payoff of the intra-industry strategy
(WMLNTRA) js higher than WML™TRA x HNTRA /H for
the full sample and the subsamples because of a lower
cross-sectional dispersion in industry-adjusted returns,
that is, HN™*/H < 1. Improvements using an intra-
industry strategy are particularly important for nonmi-
crocaps. As shown in Panel A2, the FF6-adjusted return
regains significance by controlling for the industry
benchmark, that is, 0.34% per month (¢ statistic =3.32),
as opposed to a statistically insignificant 0.18% in the
unconditional strategy (Panel Al). Similarly, the
monthly SY-adjusted return is statistically insignificant
at 0.19% for the unconditional strategy and more than
double for the intra-industry strategy, that is, 0.40% (¢
statistic=2.57). The outperformance of the intra-
industry strategy confirms that the GKX signal identi-
fies mispricing in difficult-to-arbitrage stocks.

As a robustness check, we repeat the analysis using
IPCA-predicted returns and CA2-predicted returns.
For brevity, we present only the raw return and FF6-
adjusted return for the full sample and three subsam-
ples in the online appendix, Table IA9. We confirm
that the intra-industry strategy not only delivers sub-
stantially higher returns than the inter-industry strat-
egy, but also outperforms the unconditional strategy
on a risk-adjusted basis for most subsamples with eco-
nomic restrictions. Hence, adjusting the portfolio
weights by the industry average further controls for
firm fundamentals and better predicts the subsequent
correction because of market frictions. From a practi-
tioner’s perspective, the out-of-sample performance of
machine learning portfolios can be further enhanced
via a simple industry adjustment.

6. Conclusion

This paper provides large-scale evidence on the eco-
nomic significance of machine learning methods. The
deep learning techniques that we analyze face the usual
challenge of cross-sectional return predictability. In par-
ticular, the anomalous return patterns concentrate in
difficult-to-value and difficult-to-arbitrage stocks. In
addition, to the extent that deep learning signals pre-
dict cross-sectional stock returns for the full sample, the
trading strategy is more profitable during periods of
high market volatility and low market liquidity.
Machine learning signals also involve remarkably high
turnover and often require taking extreme long-short
positions for predetermined portfolio volatility in the
tangency portfolio implied by the pricing kernel. Be-
yond economic restrictions, machine learning-based
trading strategies nonetheless display smaller down-
side risk, yield considerable profit in the long positions,
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and remain viable in the post-2001 period and the crisis
period. Finally, black-box-like machine learning meth-
ods generate economically interpretable trading strat-
egies and are more informative for stock selection than
for industry rotation.

Our findings provide timely evidence to help under-
stand machine learning applications and propose a list
of back-testing protocols for academic research and
asset management. When assessing machine learning
methods, it is imperative to consider common eco-
nomic restrictions in both the cross-section and the time
series and incorporate the trading costs due to portfolio
turnover. Similarly, it is essential to estimate the SDF
based on admissible stock positions. It is also important
to confirm the external validity of machine learning
models before applying them to different universes of
stocks, markets, asset classes, and sample periods.

Our paper also suggests an important avenue for
future research. In particular, the optimization rou-
tines that mix various anomalies could inherently dis-
play a high turnover of stocks in extreme long-short
portfolios and thus generate high trading costs. Simi-
larly, pricing kernel estimates could rely on rather
extreme long and short positions that are inadmissible
in real time. Thus, it would be useful to extend
machine learning methods to endogenously account
for trading costs and further impose plausible portfo-
lio constraints. Machine learning methods can also be
used to evaluate practical transaction costs of strategic
trading through relaxing the assumed functional
forms of dependence between the trading costs and
the invested capital and introducing a nonlinear time
series model of trading costs of a patient trader. These
and other topics are left for future research.
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Endnotes
! See Stambaugh et al. (2012) and Avramov et al. (2013, 2018).

2Gee Rapach et al. (2013), Heaton et al. (2017), Feng et al. (2018,
2019), Rapach et al. (2019), Choi et al. (2020), Freyberger et al.

(2020), Gu et al. (2020, 2021), Han et al. (2020), Rapach and Zhou
(2020), Bianchi et al. (2021), Chinco et al. (2021), Cong et al. (2021),
and Kim et al. (2021). Others focus on high-dimensionality cross-
sectional asset pricing models: Kelly et al. (2019), Chen et al. (2020),
Kozak et al. (2020), and Lettau and Pelger (2020a, b).

3 Although both formulations are equivalent theoretically, their
empirical performance could be different (Kan and Zhou 1999,
Cochrane 2001, Jagannathan and Wang 2002).

# Prior research documents that the profitability of anomaly-based
trading strategies is higher during periods of high investor senti-
ment (Stambaugh et al. 2012, Avramov et al. 2018), high market vol-
atility (Nagel 2012), and low market liquidity (Chordia et al. 2014).

5 Such interpretability does not imply that we attempt to explain
why firm characteristics predict future returns. Instead, we confirm
that machine learning generates economically interpretable trading
strategies that are in line with the most common return predictors.

5 See, Wigglesworth (2016), and Zuckerman and Hope (2017).

” We adopt the adaptive moment estimation algorithm (Adam) for
the stochastic gradient descent used in the optimization.

8 Kelly et al. (2019) show that IPCA models with five or six latent
factors fail to reject the null hypothesis that characteristics explain
expected returns only because they proxy for systematic risk expo-
sures. In addition, the total R? and predictive R* tend to converge in
the restricted and unrestricted IPCA models, and the incremental
explanatory power from observable factors is negligible if we
include five or six latent factors. We consider six latent factors to be
in line with the most recent Fama-French six-factor model (Fama
and French 2018).

9 We thank Shihao Gu, Bryan Kelly, and Dacheng Xiu for gener-
ously sharing the data on stock-level predicted returns from 1987 to
2016.

10 Details on each of the 94 firm characteristics can be found in the
appendix in Green et al. (2017) and online appendix, table A.6, in
Gu et al. (2020). We thank Jeremiah Green for making the SAS code
used by Green et al. (2017) available via his website, https://sites.
google.com/site/jeremiahrgreenacctg/home.

" We thank Amit Goyal for making the data available via his web-
site, http://www.hec.unil.ch/agoyal/.

12 We thank Markus Pelger for generously sharing the data on sto-
chastic discount factor and stock-level factor loadings from 1967 to
2016. Details on each of the 46 firm characteristics can be found in
appendix C in Chen et al. (2020).

13 Unreported results confirm our main findings in an overlapping
sample for all machine learning methods.

¥ Fama and French (2008) recognize microcaps as stocks with a
market capitalization smaller than the 20th NYSE size percentile.

15 We obtain the monthly S&P long-term issuer credit ratings from
the COMPUSTAT database. We follow Avramov et al. (2009) in cre-
ating the numeric rating score, which transforms the S&P ratings
into ascending numbers as follows: AAA=1, AA+=2, AA=3,
AA-=4, A+=5, A=6, A-=7, BBB+=8, BBB=9, BBB-=10,
BB+=11, BB=12, BB-=13, B+=14, B=15, B-=16, CCC+=17,
CCC=18, CCC-=19, CC=20, C=21, and D=22. A higher credit
rating score implies higher credit risk.

18 Although some prior work account for size-based adjustments,
the market cap considerations in existing studies are not unified.
For instance, GKX report equal-weighted performance when micro-
caps are excluded (online appendix, table A.10) and value-weighted
performance without market cap restrictions (Table 7); CPZ con-
sider the market cap subsample threshold as a parameter; KPS par-
tition the sample into large and small stocks, where the former is


https://sites.google.com/site/jeremiahrgreenacctg/home
https://sites.google.com/site/jeremiahrgreenacctg/home
http://www.hec.unil.ch/agoyal/
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the top 1,000 stocks in terms of market cap and the latter consists of
the rest; and KNS restrict the investment universe to stocks with
market caps greater than 0.01% of the aggregate stock market capi-
talization. Our approach is unified across all methods, that is,
excluding microcaps and value weighting, as proposed by Hou et al.
(2020) in the context of individual anomalies. We also consider
restrictions that go beyond the market cap in both the cross-section
and time series. Resorting to such a unified approach delivers new
and previously undocumented evidence on economic significance.

17 We follow the existing literature and report performance based
on decile portfolios, for example, table 7 in GKX, figure 7 and table
II in CPZ, and table 3 in Gu et al. (2021) for both IPCA and CA
methods. In addition, we report out-of-sample Sharpe ratios in
Tables 5 and 6 for all machine learning signals in both the full sam-
ple and three subsamples. As a robustness check, we also report
investment payoff based on all stocks (instead of the extreme dec-
iles) in Table 10 and the online appendix, Table IA9.

8 We thank Kenneth French and Robert Stambaugh for making the
common factor returns available via their websites: https://mba.
tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html;
https: //fnce.wharton.upenn.edu/profile/stambaug/. The results
using Stambaugh and Yuan (2017) factors end in 2016 due to data
availability.

19 Newey and West (1987) suggest using lags corresponding to
N4, where N refers to the number of observations. Our sample
includes 372 monthly observations; thus, we use four lags.

20 The stock-month observations from 12 months before to 12
months after an issuer credit rating downgrade account for 23% of
the credit rating sample.

21 Given that we require at least 24 observations for alpha estima-
tion, the sample size is slightly smaller than the main results. How-
ever, as shown in the online appendix, Table IA5, Panel B, the find-
ings are qualitatively and quantitatively comparable to those in
Table 1.

22 Gomes et al. (2003) formulate an equilibrium model in which
beta could vary with firm-level predictors, such as size and book-
to-market, whereas Avramov and Chordia (2006) show empirically
that such conditional formulations improve the pricing ability of
the model.

2 Stocks that are plentiful but low in aggregate market value may
dominate equal-weighted portfolio returns, and value-weighting
accurately captures the total wealth effect experienced by investors
(Fama 1998); therefore, we focus on value-weighted results in all
subsequent analyses. Unreported results indicate similar findings
for equal-weighted portfolios.

24 Without an exhaustive analysis of candidate machine learning
models, it is premature to identify the best-performing method in
the presence of economic restrictions. We leave this issue for future
research.

25 For perspective, the skewness and excess kurtosis are equal to
zero under a normal distribution.

28 For perspective, we assess the performance of other long-short
portfolios using the FF6 model for the crisis period. Both the size
factor (SMB) and the momentum factor (MOM) yield negative
returns, that is, —3.16% for SMB and —0.20% for MOM, whereas
some other factors provide a good hedge during the crisis, that is,
2.44% for the value factor (HML), 3.21% for the profitability factor
(RMW), and 3.46% for the investment factor (CMA). All returns are
scaled to 10% annual volatility.

27 Unreported results show that the monthly turnover in the equal-
weighted long-short portfolio ranges between 79% and 82% for the
GKX method, between 141% and 147% for the CPZ method,

between 99% and 103% for the IPCA method, and between 130%
and 136% for the CA method.

28 We compute the break-even transaction cost as the payoff to the
long-short investment strategy divided by its turnover. For
instance, the break-even transaction cost for GKX method for the
full sample equals 0.916%/0.976 =0.94%, where 0.916% is the
value-weighted FF6-adjusted return (Table 1, Panel A), and 0.976 is
the corresponding turnover (Table 5, Panel A). Unreported results
show that if we exclude microcaps from the training sample (as
shown in Table 2), the monthly turnover in the value-weighted
long-short portfolio remains at 99% for the GKX method, which fur-
ther creates a break-even transaction cost of 0.49%. In addition,
when we use NN3 with the value-weighted loss function to predict
alpha (as shown in the online appendix, Table IA5, Panel A), the
monthly turnover in the value-weighted long-short portfolio in the
full sample remains at 106%, which further creates a break-even
transaction cost of 0.57%.

29 0One caveat of applying the transaction costs estimates from
Novy-Marx and Velikov (2016) is that the transaction costs are
based on effective bid-ask spread and discard the price impact and
therefore underestimate the true costs faced by large traders in the
market. On the other hand, the transaction costs are computed from
aggregate data including multiple trade types and traders; hence,
they overestimate the actual trading costs of a sophisticated institu-
tional trader (Frazzini et al. 2018).

30 Brandt et al. (2009) define T; so that transaction costs in 1974 are
four times larger than those in 2002. We follow their approach to
compute a starting value of 2.6 in 1987.

31 KNS rely on two sets of characteristics. One includes 50 firm char-
acteristics underlying common anomalies, and the other is based on
80 predictive characteristics consisting of 68 financial ratios from
WRDS and 12 variables based on past monthly returns. They supple-
ment the two sets of raw characteristics with characteristics based on
second and third powers and linear first-order interactions of charac-
teristics. We adopt the same set of 94 firm characteristics as in GKX to
be consistent with other results reported in this paper.

32 The in-sample estimation ranges from September 1964 to Decem-
ber 2004 for the full sample and for the subsample excluding micro-
caps and ranges from January 1986 to December 2004 for the sub-
samples excluding nonrated firms and distressed firms due to data
availability.

33 KNS exclude stocks with market caps below 0.01% of aggregate
stock market capitalization at each point in time. For perspective,
this sample selection criterion excludes all microcaps and approxi-
mately 60% of the nonmicrocaps in our sample. We nevertheless
implement their analysis for the full sample as well as three sub-
samples to demonstrate the role of economic restrictions. In addi-
tion, we also examine the important role of financial distress at the
firm level and business conditions in the aggregate.

34 This rescaling exercise addresses the concern of SDF scalability.
Otherwise, portfolio weights are not uniquely identified because
they are proportional to the inverse of the covariance matrix times
the mean vector.

3% A plausible way to mitigate extreme stock positions would be to
add an L'-penalty (as in the least absolute shrinkage and selection
operator, namely, LASSO) in addition to L% Although the tuning
parameter in LASSO can be found through a model selection crite-
rion or cross-validation, its optimal value can still indicate extreme
positions. To mitigate that concern, the tuning parameter value
must be bounded. The addition of an L'-penalty could challenge
the nonsparse representation advocated by KNS.

3 We thank Jeffrey Wurgler and Guofu Zhou for making
the index of investor sentiment available via their websites,
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http: //people.stern.nyu.edu/jwurgler/; http://apps.olin.wustl.edu/
faculty /zhou/zpublications.html.

37 We obtain the monthly VIX index from the CBOE website, http://
www.cboe.com/products/ vix-index-volatility / vix-options-and-futures /
vix-index/ vix-historical-data.

38 Unreported results show that the machine learning-based invest-
ments remain profitable in the post-2013 period, i.e., the last five
years in our sample, and the monthly value-weighted long-short
portfolio return is 0.72% (1.30%, 0.98%) across all stocks and 0.46%
(1.31%, 1.26%) after excluding microcaps for the GKX (IPCA, CA)
signal. In addition, unrestricted IPCA also predicts the cross-section
of stock returns for the full sample and for subsamples with eco-
nomic restrictions in the post-2001 period (online appendix, Table
IA7, Panel C).

39 In unreported tests, we run Fama and MacBeth (1973) regressions
of realized excess returns on predictive signals derived from all
four machine learning methods. Evidence indicates considerably
lower slope coefficients in the post-2001 period. Thus, considering
all stocks (beyond the extreme long and short portfolios), machine
learning-based predictability seems to decrease in recent years.

40 Unreported results confirm that our main findings are robust in
the post-2001 period and various market states such as investor sen-
timent, market volatility, and market liquidity.

#1 Given the nature of this decomposition, we analyze machine
learning signals based only on predicted returns in this subsection,
that is, GKX, IPCA, and CA.
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