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Integrating Factor Models
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ABSTRACT

This paper develops a comprehensive framework to address uncertainty about the
correct factor model. Asset pricing inferences draw on a composite model that in-
tegrates over competing factor models weighted by posterior probabilities. Evidence
shows that unconditional models record near-zero probabilities, while postearnings
announcement drift, quality-minus-junk, and intermediary capital are potent factors
in conditional asset pricing. Out-of-sample, the integrated model performs well, tilt-
ing away from subsequently underperforming factors. Model uncertainty makes eq-
uities appear considerably riskier, while model disagreement about expected returns
spikes during crash episodes. Disagreement spans all return components involving
mispricing, factor loadings, and risk premia.

FINANCIAL ECONOMISTS HAVE IDENTIFIED A PLETHORA of firm characteris-
tics that predict future stock returns (e.g., Cochrane (2011) and Harvey, Liu,
and Zhu (2016)). The literature has further proposed two major approaches
to reduce the expanding number of predictors. The first invokes economic ra-
tionales, for example, plausible restrictions on the admissible Sharpe ratio,
the present-value model, and the g-theory, to identify a small set of common
factors, while the second approach formulates the dependence of average re-
turns on common factors or firm characteristics through regression regular-
ization techniques including deep learning extensions. However, the collection
of factors that matter most remains subject to research controversy.! Signifi-
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cant uncertainty also extends to the choice of macro variables that potentially
govern time-varying investment opportunities. Moreover, even if the
econometrician has prior information about the identity of asset pricing factors
and macro predictors, there is still uncertainty about whether the underlying
model holds exactly or instead admits the possibility of mispricing.

Surprisingly, a comprehensive analysis of Bayesian model uncertainty
has not been accounted for in formulating expected returns or in deriving
mean-variance efficient portfolios. When addressing model uncertainty, the
researcher’s core tasks are identifying a universe of competing factor models,
assessing the probability that a candidate model generates the observed dy-
namics of asset returns, and then integrating over the vast model universe us-
ing posterior probabilities as weights. This approach, termed Bayesian model
averaging (BMA), yields an integrated model that summarizes the various
sources of uncertainty about the joint dynamics of asset returns. With model
uncertainty taken into account, inferences about the cross-section are condi-
tioned on the entire information set instead of relying on the information con-
tained in a single model. The Bayesian approach can therefore temper the
data-snooping concerns identified in the literature (e.g., Harvey, Liu, and Zhu
(2016), Harvey (2017), Hou, Xue, and Zhang (2020)).

In this paper, we develop and apply a framework to study average returns,
the covariance matrix, and efficient portfolios in the presence of model uncer-
tainty. Candidate models differ with respect to the collection of cross-sectional
factors, the set of macro predictors, and the factor model specification, which
either holds exactly or admits various degrees of mispricing. A key challenge of
the framework is the formulation of model posterior probability or the proba-
bility that a candidate model generates the observed dynamics of asset returns.
In particular, motivating economically interpretable priors for all parameters
underlying the factor model and the dynamics of factor risk premia is essen-
tial. Our informed priors are weighted against both time-varying moments and
model mispricing. The resulting model posterior probability employs sound
economic intuition and penalizes model complexity to the extent that an in-
cremental factor beyond the market or a macro predictor is retained only if it
considerably improves pricing ability.

In the presence of model uncertainty, expected returns are a mixture of
model-implied expected returns, where mixture stands for weighting based on
model posterior probabilities. The covariance matrix consists of three compo-
nents. The first is a mixture of model-implied covariance, assuming that the
model parameters are known. The other two components arise from uncer-
tainty about the correct factor model and its underlying parameters.

The first of these two components reflects estimation risk, that is, the risk
that the underlying model parameters are estimated with error. The second

Manresa, Penaranda, and Sentana (2017), Feng, Giglio, and Xiu (2020), Freyberger, Neuhierl, and
Weber (2020), Gu, Kelly, and Xiu (2020), Kozak, Nagel, and Santosh (2020), Chen, Pelger, and Zhu
(2023), and Cong et al. (2021) for the second. Notably, the various specifications could disagree on
the set of factors that matter most.
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summarizes model disagreement. Intuitively, a stock appears riskier when
there is greater disagreement among candidate models about its expected
return. Like the Ridge regression approach, the disagreement component
could make an otherwise ill-conditioned covariance matrix of stock returns
readily invertible. Through the Bayesian approach, the predictive distribution
of future returns integrates out the within-model parameter space (parameter
uncertainty) and the model space (model uncertainty). Thus, the resulting effi-
cient portfolios do not depend on a particular model or underlying parameters.

We apply the framework to sample data that consist of 14 asset pricing fac-
tors and 13 macro predictors from 1977 to 2016. The model universe exceeds
52 million specifications. We first examine some stylized model features. For a
reasonable prior Sharpe ratio, the 10 (100, 500) top-ranked individual models
account for a cumulative posterior probability of 30% (76%, 93%), suggesting
no clear winner across the whole space of candidate models.? Instead, many
distinct models record a positive and meaningful probability of governing the
joint distribution of stock returns. While model selection would narrow focus
to a single factor model, or a few models, the Bayesian approach integrates
across the dynamics of nonzero probability models.

Even when prior beliefs are weighted against time-varying moments, our
procedure uniformly favors conditional models and indicates that both factor
loadings and risk premia vary with macroeconomic conditions.? Remarkably, in
the presence of conditional factor models, the cumulative probability of uncon-
ditional models is practically zero. Likewise, while prior beliefs are weighted
against mispricing, the analysis shows that time-varying mispricing appears
with a high probability. Hence, zero-alpha (or even constant-alpha) models se-
lected from the collection of factors and macro predictors may not adequately
explain cross-sectional and time-series effects in returns.

Several findings on the strength of factors and macro predictors in the in-
tegrated model are worth noting. First, for a reasonable prior Sharpe ratio,
postearnings announcement drift (PEAD, Daniel, Hirshleifer, and Sun (2020))
and quality-minus-junk (QMJ, Asness, Frazzini, and Pedersen (2019)) dis-
play a posterior inclusion probability of close to 100%, followed by invest-
ment (CMA, Fama and French (2015)), size (SMB, Fama and French (1993)),
intermediary capital (ICR, He, Kelly, and Manela (2017)), and management
(MGMT, Stambaugh and Yuan (2017))—all of which offer a posterior inclusion
probability of at least 90%, highlighting their promise in pricing other factors.
Moreover, despite the expanding factor zoo, several new factors proposed after
2015, including fundamental and behavioral factors, have incremental ability
to price the existing factors.

2In our baseline case, the prior Sharpe ratio for the tangency portfolio is set to be 50% higher
than the market Sharpe ratio. The top-ranked models describe factor models that record the high-
est posterior probabilities based on the Bayesian procedure.

3 In separate tests based on multivariate predictive regressions, the specifications that include
nonlinearities and interactions between macro predictors uniformly dominate linear specifica-
tions. This result further supports the notion that both factor loadings and risk premiums vary
with economic conditions.
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Second, while PEAD, QMJ, and ICR stand out across different prior specifi-
cations, the inclusion probabilities for SMB, CMA, and MGMT diminish for
a high prior Sharpe ratio. In contrast, betting-against-beta (BAB, Frazzini
and Pedersen (2014)) exhibits high inclusion probability only when the prior
is tilted toward a high Sharpe ratio. Thus, the pricing abilities of widely ex-
plored factors depend on one’s views about how large the Sharpe ratio could
be. Bounding the prior Sharpe ratio to sensible values reinforces one group of
factors (e.g., CMA and MGMT) while challenging others (e.g., BAB).

Likewise, bounding the Sharpe ratio has implications for the inclusion of
macro predictors in a factor model specification. For instance, the yield on
Treasury bills and the term spread appear with almost zero probability for
sensible values of prior Sharpe ratios. However, when the prior Sharpe ratio
is considerably higher, both macro items record a 90% probability of inclusion.
The increasing probability supports the notion that strong in-sample evidence
on predictability by aggregate variables could be associated with inadmissibly
large Sharpe ratios. The out-of-sample evidence on time-series predictability
is therefore often weaker.

Overall, the probability analysis supports a conditional model with a hand-
ful of factors that originate from distinct economic foundations rather than an
established, well-known paradigm. For instance, while PEAD, QMJ, and ICR
are proposed by three independent works, their combination has not been ex-
amined in the previous literature.

We next assess the out-of-sample performance of the Bayesian approach us-
ing tangency portfolios that are based on the integrated predictive distribu-
tion. We first compute the Sharpe ratio and downside risk for the tangency
portfolio. For comparison, we consider four benchmark models that are widely
used by academics and practitioners, namely, the capital asset pricing model
(CAPM), the Fama-French three-factor model (Fama and French (1993)), the
Fama-French six-factor model (Fama and French (2018)), and the AQR six-
factor model (Frazzini, Kabiller, and Pedersen (2018)). We further consider the
three top-ranked individual models, particularly the three highest posterior
probability models based on the Bayesian approach.

The integrated model outperforms the benchmark models out-of-sample. It
generates an annualized Sharpe ratio of 1.240, indicating an 8% improvement
over the best benchmark model. To ensure that the tangency portfolio relies
on admissible long and short positions, we further impose the Regulation-T
constraint on stock holdings.* We find that the integrated model produces an
out-of-sample annualized Sharpe ratio of 0.979, outperforming the best bench-
mark model by 25%. The Bayesian approach also mitigates the downside risk.
Relative to benchmark models, the tangency portfolio based on the integrated

4 Regulation-T of the Federal Reserve Board mandates maximum two-to-one leverage
(e.g., Jacobs, Levy, and Starer (1999)). See the Financial Industry Regulatory Authority (FINRA)
website for details: https:/www.finra.org/rules-guidance/key-topics/margin-accounts. Formally,
accounting for Regulation-T, the sum of the absolute values of long and short positions is con-
strained to be less than or equal to two, where two is obtained by dividing one by the initial
margin of 50%.
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model exhibits less negative skewness, lower excess kurtosis, and lower maxi-
mum drawdown, to the extent that there are only modest declines in portfolio
value when the overall market drops significantly. In addition, while the top-
ranked individual models display similar posterior probabilities, we observe
more variations in their performance and relative strength. Therefore, model
selection may provide an unstable description of asset return dynamics, while
model integration improves the stability of forecasts.

It is also important to assess the performance of the global minimum vari-
ance portfolio (GMVP), which relies only on the covariance matrix of returns.
The covariance matrix accounts for model uncertainty through a mixture of
model-implied covariance, estimation risk, and model disagreement about ex-
pected returns. Thus, if model uncertainty has meaningful asset pricing im-
plications, the GMVP based on the integrated model should generate payoffs
characterized by relatively low-risk measures.

Indeed, the GMVP based on the integrated model generates improved mea-
sures of realized volatility and maximum drawdown. For instance, monthly
realized volatility for GMVPs based on the benchmark models ranges between
0.956% and 2.127%, while it appears to be only 0.756% for the integrated
model, indicating a 21% to 64% reduction in volatility. In addition, the max-
imum drawdown (across the entire sample) for the benchmark models ranges
between 6% and 27%, compared to 5% for the integrated model. The lower
volatility characterizing the Bayesian approach translates into a higher out-
of-sample Sharpe ratio. The GMVP based on the integrated model generates
an annualized Sharpe ratio of 1.101, outperforming the best benchmark model
by 35%. These results highlight the sizable impact of model uncertainty on the
covariance matrix of returns.

We next explore the integrated model’s portfolio tilts. We find a positive cor-
relation between tangency portfolio weights and subsequently realized factor
returns for 9 out of 14 factors out-of-sample, with an average correlation of
4.5%. These results suggest that the tangency portfolio is tilted toward sub-
sequently outperforming factors and away from underperforming factors. In
comparison, the equal-weighted portfolio indicates a zero correlation. Focus-
ing on subperiods of negative factor returns, the correlation between portfolio
weights and realized factor returns increases to 10.5%. Thus, the integrated
model is instrumental in mitigating adverse investment outcomes through fac-
tor rotation.

We conduct four final experiments to shed further light on the implications
of model uncertainty for the investment opportunity set. First, we compare
the sample variance of factor returns with the sample average of the perceived
variance based on the integrated model. Excluding model uncertainty, the sam-
ple variance should exceed the time-series average of the conditional variance,
as the latter uses information from macro variables. With model uncertainty
and estimation risk taken into account, however, we find conflicting forces un-
derlying the variance comparison. Empirically, most of the factors display re-
markably higher variance through the lens of the integrated model. For per-
spective, the integrated model variance is, on average, 53% higher than the
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sample variance across all factors. The findings suggest that the mixture of
estimation risk and the model disagreement components jointly have a sizable
impact on the ex-ante risk of equities. Thus, a Bayesian agent that accounts for
uncertainty about the factor model specification perceives the traded factors to
be considerably riskier than what would be implied by the sample volatility.

Second, we examine the time variation in model disagreement about ex-
pected returns. Following the literature on information theory, we use increas-
ing entropy to measure the contribution of model uncertainty to the covari-
ance matrix. While the increase in entropy is modest on average, it spikes
dramatically during major market downturns, such as Black Monday in Octo-
ber 1987 and the recent financial crisis starting in September 2008. Compared
to a benchmark value of one, indicating no entropy increase, the full sample
average is 1.010 but increases to 1.069 at the 99'" percentile and reaches a
maximum of 1.379. We then estimate the contribution of each factor to the
overall entropy increase. The time-varying model uncertainty component is
driven primarily by the market, MGMT, and ICR factors. All three factors have
a maximum contribution of at least 10% to the total increase in entropy in both
the full sample and various subperiods.

Third, we analyze the underlying forces driving model disagreement over
time. Specifically, we consider seven model-specific components that govern
expected returns, including (i) fixed mispricing, (ii) time-varying mispricing,
(iii) fixed factor loadings with fixed risk premia, (iv) fixed factor loadings with
time-varying risk premia, (v) time-varying factor loadings with fixed risk pre-
mia, (vi) time-varying factor loadings with time-varying risk premia, and (vii)
time-varying risk premia. We find that model disagreement appears in all com-
ponents and is highly skewed. For instance, the maximum disagreement in
time-varying factor loadings with time-varying risk premia (time-varying mis-
pricing) is, on average, 9.27 (5.24) times its mean across all factors. Impor-
tantly, during crash episodes, candidate models significantly disagree more on
mispricing, factor loadings, and risk premia, which all jointly contribute to the
overall increase in entropy.

Finally, we investigate whether candidate models differ in their implied port-
folio choice and performance. We find that candidate models display meaning-
ful dispersion in tangency portfolio weights and investment returns, especially
during major market downturns. Therefore, accounting for model uncertainty
is highly relevant for academics and practitioners in portfolio construction and
risk management.

Taken together, our approach identifies potent factors in conditional asset
pricing. Out-of-sample, the integrated model delivers outperforming strate-
gies, tilting away from underperforming factors. The Bayesian approach also
reduces the downside risk and volatility of efficient portfolios. The set of find-
ings is robust to imposing plausible constraints on the admissible Sharpe ra-
tios and equity positions. In our setting, model disagreement can be mapped
into disagreement among heterogeneous investors about expected stock re-
turns. We show that such disagreement spikes around market downturns and
is attributed to mispricing, factor loadings, and risk premia, both the fixed and
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time-varying components. Overall, in the presence of model uncertainty, equi-
ties appear considerably riskier from the perspective of a Bayesian agent.

To our knowledge, Avramov and Chao (2006) is the first study to formally
compare asset pricing models, both nested and nonnested, using posterior
probabilities. Subsequent studies include Anderson and Cheng (2016), Stam-
baugh and Yuan (2017), Barillas and Shanken (2018), Chib and Zeng (2019),
Chib, Zeng, and Zhao (2020), Bryzgalova, Huang, and Julliard (2023), and
Chib, Zhao, and Zhou (2023). Our study differs from these in four major re-
spects. First, related work on model comparison and factor selection is typ-
ically based on rankings of posterior probabilities, while we propose a novel
approach that integrates over the space of candidate models. Second, existing
studies mainly focus on unconditional models, while we consider time-varying
mispricing, factor loadings, and risk premia, and we provide evidence for non-
linear dependence between expected returns and macro items. Third, prior be-
liefs about the entire parameter space are economically interpretable in our
setup, while statistically motivated training samples are often employed to
formulate informed priors. Finally, our comprehensive examination of the in-
tegrated model implications for the investment opportunities set is novel.

The remainder of the paper proceeds as follows. Section I derives a gen-
eral methodology for analyzing asset pricing with model uncertainty. Section 11
derives the posterior probabilities for factor models. Section III describes the
data. Section IV presents a probability analysis of pricing models and individ-
ual factors and predictors. Section V assesses the out-of-sample performance of
the integrated model through both tangency portfolios and GMVPs. Section VI
presents evidence on the riskiness of equities in the presence of model un-
certainty and dissects the time-series variation in model disagreement about
expected returns. Section VII concludes the paper.

I. Asset Pricing with Model Uncertainty

A key challenge in our framework is the formulation of model posterior
probabilities or the probability that a candidate factor model generates the
observed dynamics of asset returns. For one, it is essential to formulate eco-
nomically interpretable priors for all parameters underlying the factor model
and the dynamics of factor risk premia. In a general context, combining an
improper prior with a likelihood function yields a well-defined posterior distri-
bution. In computing posterior probabilities, however, the prior density must
be fully specified and avoid undefined constants characterizing a flat prior.®
Otherwise, the posterior probability is not interpretable.

A large body of work in financial economics motivates economically meaning-
ful priors on a subset of the parameter space. For instance, Pastor and Stam-
baugh (1999) account for prior information about mispricing, or alpha, which
translates into a certain degree of belief in model pricing abilities. Kozak,
Nagel, and Santosh (2020) impose an economically motivated prior on Stochas-

5 See, for example, the discussions in Kass and Raftery (1995) and Poirier (1995).
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tic Discout Factor (SDF) coefficients. They introduce a prior for mispricing that
can be expressed in terms of the relation between risk premia of principal com-
ponent factors and their eigenvalues.

In this paper, we propose economically interpretable priors for the entire
parameter space underlying beta pricing specifications. The informed priors
are weighted against both time-varying moments and model mispricing, or
the priors favor an exact (zero-alpha) unconditional factor model. The result-
ing model posterior probability employs sound economic intuition. It penalizes
model complexity to the extent that an incremental factor beyond the market
or macro predictor is retained only if it considerably improves pricing abilities.

To set the stage, let r; denote an N-vector of excess returns on test assets,
let f; denote a K-vector of factors that are return spreads, and let z; denote
an M-vector of macro variables that are potentially related to the distribution
of future returns. The length of the time series is denoted by T, and the ¢
subscript represents time ¢ realizations.

Excess returns are modeled by the asset pricing regression

re1 =a(ze) + BEOfir1 + Urpya, (1D
while factors are formulated using the time-series predictive regression
frr1=0r +arz +Upri1. 2)

The residuals [u,, ,, W, 411" are orthogonal innovations assumed to obey the
normal distribution: u,;1 ~ N(0, Xzr) and us;1 ~ N(0, Xrr). The intercept
a(z;) and slope B(z;) coefficients are given by «(z;) = ag + a12z; and B(z;) =
Bo + B1k ® z;), where ® denotes the Kronecker product and Ik is an identity
matrix of size K. Excess stock returns can then be rewritten as

rev1 =0 + 012 + Bofre1 + P1lr @ 2¢) fra1 + Urp1. 3

The intercepts oy and 1 represent an N-vector and an N x M matrix reflect-
ing fixed and time-varying model mispricing, respectively. When the factors
are portfolio spreads, an asset pricing model implies that both alpha compo-
nents are equal to zero. When only «¢ # 0, time-invariant model mispricing is
present, while when «; # 0, model mispricing varies with macro conditions.®
Next, B(z;) is an N x K matrix of potentially time-varying factor sensitivities,
where By is an N x K matrix, and $; is an N x (KM) matrix. Factor loadings
are time-varying if 81 # 0. The formulation in equation (2) allows risk premia
to be time-varying (ap # 0).

The asset pricing specification in equations (2) and (3) gives rise to mul-
tiple sources of uncertainty characterizing stock return dynamics. We start
with mispricing uncertainty. Does a prespecified factor model explain the

6 Avramov (2004) shows that mean-variance portfolios that account for time-varying mispricing
outperform competing specifications. Ferson and Harvey (1999) support time-varying mispricing
in asset pricing tests.
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cross-sectional variation in average stock returns? Pastor and Stambaugh
(1999) show that uncertainty about model pricing ability could be substantial.
Gibbons, Ross, and Shanken (1989), among others, derive classical asset pric-
ing statistics to test zero-alpha restrictions (see Campbell, Lo, and MacKinlay
(1997) and Cochrane (2009) for a comprehensive review), while Harvey and
Zhou (1990), McCulloch and Rossi (1991), Kandel and Stambaugh (1995), and
Avramov and Chao (2006) develop Bayesian asset pricing tests.

There is also substantial uncertainty about the identity of asset pricing fac-
tors. Remarkably, Harvey, Liu, and Zhu (2016) count 316 factors, and Hou, Xue,
and Zhang (2020) cover 452 anomalies. Two major approaches have been pro-
posed to address the expanding dimension of the cross-section. The first identi-
fies a small number of factors based on sound economic intuition. For instance,
motivated by the dividend discount valuation model, Fama and French (2015)
propose a five-factor model that augments the original market, size, and value
factors with investment and profitability factors. Hou, Xue, and Zhang (2015)
and Hou et al. (2021) propose g-factor models that draw on the g-theory of in-
vestment. Stambaugh and Yuan (2017) identify two mispricing factors based
on 11 anomalies studied in Stambaugh, Yu, and Yuan (2012). The second ap-
proach proposes shrinkage methods such as Lasso, Ridge, and their extensions
(e.g., Green, Hand, and Zhang (2017b), DeMiguel et al. (2020), Feng, Giglio,
and Xiu (2020), Freyberger, Neuhierl, and Weber (2020), and Kozak, Nagel,
and Santosh (2020)). Shrinkage methods employ a trade-off by reducing the
variance of estimated parameters at the cost of introducing a bias. Neverthe-
less, the true set of asset pricing factors remains subject to debate.

A third type of uncertainty concerns the identity of macro variables that
forecast changing investment opportunities. Prior work addresses this uncer-
tainty through the predictive regression setup. When M macro variables are
suspected to be relevant in predicting future returns, there are 2 competing
predictive regressions. In classical econometrics, model selection criteria are
typically employed to select among competing models. At the heart of model
selection, one applies a specific criterion (e.g., Bayesian information criterion)
to select a single model and then continues as if the model is correct with
unit probability. Using various model selection criteria, Bossaerts and Hillion
(1999) and Welch and Goyal (2008) detect no out-of-sample return predictabil-
ity even when the in-sample evidence is solid.

Counter to the classical approach, BMA is a comprehensive method that
directly follows from Bayes rule and is justified from a decision-making per-
spective. The Bayesian method assigns posterior probabilities to each of the
2M predictive regressions and then uses the probabilities as weights on the
individual return forecasting models to obtain a composite weighted model.
As shown by Avramov (2002), the Bayesian approach displays robust predic-
tive power relative to model selection criteria. In addition, the Bayesian model
integration approach does detect evidence on out-of-sample predictability by
macro variables.

In this paper, we propose a novel Bayesian approach to study time-series
and cross-sectional effects in asset returns when the true factor model and
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its underlying parameters are uncertain. We first consider a universe of
candidate asset pricing factors and macro predictors. We then compute the
posterior probability for each candidate model. Models differ with respect to
the three sources of uncertainty described above. Table I, Panel A, lists the
candidate models considered in the paper.

The symbols M; and My represent the family of unconditional models with-
out mispricing (M) and with fixed mispricing (My), while M3 and My repre-
sent the family of conditional models with time-varying factor loadings and
risk premia. In particular, M3 excludes mispricing, while My allows for both
fixed and time-varying mispricing. Within these families, models differ in their
inclusion of asset pricing factors (M; and Ms) or their inclusion of both factors
and predictors (M3 and My).

In the presence of model uncertainty, expected stock returns are given by

L
Elre1ID] = ) P(MID)E[r:11M;, D], 4)
=1

where D stands for the observed data, which consists of a balanced panel of
N test assets, K factors, and M macro predictors through T periods, ! is a
model-specific subscript, M; is a candidate factor model, P(M;|D) is the model
posterior probability, E[r;1|M;, D] is the model-specific expected return, and
L is the total number of candidate models.

The covariance matrix of stock returns can be decomposed into three compo-
nents. We start with a two-component decomposition given by

Var[r,.1|D] =V; + Q, (5)

L

where V; = Y P(M;|D)Var(r;;1|M;, D] and ; reflects variation due to model
=1

disagreement about expected stock returns.

In particular, V; is a mixture (probability-weighted average) of model-implied
covariance matrices that takes into account the stochastic nature of the un-
derlying model parameters in the Bayesian setting. We can decompose V; fur-
ther into two terms. The first is a mixture of model-implied covariance ma-
trices, assuming that model parameters are known. The second is a mixture
of model-implied estimation risks. Estimation risk, or parameter uncertainty,
comes into play because the parameters in our setting are stochastic. Note that
V; can fluctuate over the business cycle due to time-varying factor loadings.

Next, ; is given by

Qt = Var(E[rt+1|Ml, D])

L
=Y P(M;|D)(E[r1+1|M;, D] = Elre;1|D))(E(r1+1| My, D] = Elre41|D]). (6)
1=1

The ©; component summarizes the disagreement across candidate models
about expected stock returns. An asset’s incremental variation is larger when
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candidate models disagree more about its expected returns. When restricting
Q; to be diagonal, the matrix Var[r;,1|D] can be readily invertible even when
V, is singular or ill-conditioned.” Thus, adding €, resembles the Ridge regres-
sion penalty, but there are important differences. In Ridge regressions, the
variance of returns takes the form Var[r,,i|M, D] =V, + yIy, where V, is a
frequentist-based estimate of the covariance matrix of returns, in which each
of its elements is smaller (in absolute values) than the Bayesian counterpart
due to estimation risk, and y corresponds to a homogeneous shrinkage inten-
sity toward the identity matrix of order N, the number of test assets.

The covariance matrix decomposition in equation (5) is similar to the shrink-
age methods proposed by Ledoit and Wolf (2003, 2004), which have been
shown to improve volatility forecasting in high-dimensional setups. However,
Ledoit and Wolf (2003, 2004) propose shrinkage toward a parsimonious tar-
get, whereas the posterior predictive variance imposes asset-specific shrink-
age toward the grand mean, V;, in proportion to the general agreement among
candidate models about mean returns.

In sum, the integrated model has a three-component covariance matrix,
which includes (i) a mixture of model-implied covariance matrices, assuming
that model parameters are known, (ii) a mixture of model-implied estimation
risks, and (iii) model disagreement about expected returns.

While BMA follows directly from Bayes’ rule, there are other approaches to
model combination. Examples include decision-based model combinations per
Billio et al. (2013) and optimal prediction pooling per Geweke and Amisano
(2011).% Ex-ante, BMA would be optimal under several loss functions, includ-
ing log loss and squared error loss (Hoeting et al. (1999)).

II. Deriving Posterior Probabilities
A. General Formulation

Let 6 denote the unique parameter space for every candidate model. The pa-
rameter space consists of the intercept and slope coefficients in equations (2)
and (3) as well as the covariance matrices. Combining the prior density on the
parameters, 7 (0| M;), and the likelihood based on observing data, £(D|6, M;),
yields the posterior distribution, 7 (6|D, M;). The posterior reflects the distri-
bution of unknown parameters 6 given (i) prior views, (ii) the observed data D,
and (iii) the particular factor model M;.

7In the empirical analyses, the investment universe is relatively small. We can therefore keep
; general enough to enable covariances due to cross-model disagreements.

8 Neither approach shows promise when applied to our setting. First, we examined utility-based
combination weights as a function of the realized certainty equivalent or the Sharpe ratio as a
suitable objective for a mean-variance investor. The resulting combination weights concentrate all
mass on a single underperforming model. Second, the implementation of optimal prediction pools
in the spirit of Geweke and Amisano (2011) requires sampling from a posterior predictive distribu-
tion for each model to evaluate log predictive scores. In our vast model universe, such a procedure
is computationally infeasible even with supercomputing capacities available, and narrowing the
focus to a manageable universe of unconditional models leads to weak performance.
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An intermediate input in computing the model posterior probability is the
model marginal likelihood, denoted by m(D|M;). Following Chib (1995), the
marginal likelihood is computed (dropping the model-specific subscript to ease
notation) as

m(DIM) = /ﬁ(D|9,M)n(9|M)d9
0

_ LD, M)m(6IM)

7(0|D, M) ™

The marginal likelihood in equation (7) does not depend on 0, as it integrates
out the entire parameter space. By doing so, the marginal likelihood provides
a consistent form to adjust for model complexity and thus guards against over-
fitting.

Next, the posterior probability of model M is given by

m(D|M)P(M)
> mDIM)PM,)
where P(M;) is the prior probability that model M; is correct. Without a

compelling reason to favor, ex-ante, one model over another, we choose equal
probabilities.”

P(M|D) = (8

B. Posterior Probabilities for Factor Models

Given the general formulation, we next attempt to compute marginal likeli-
hoods for competing factor models. The prior distribution is based on a hypo-
thetical sample of length 7},.1° In that sample, the means and the covariance
matrices of stock returns, factors, and predictors are set equal to the actual
sample counterparts given by

1 XT: L1 XT:
r== r: V, == (ry = 7)ry — 7)),
T t=1 T t=1
1 T . 1 T B B
f=52 1 Vi=g 2 (fi= D= 1),
t=1 t=1
1 Tz‘l .1 Tz‘l
zZ == 24 V, == (z: — 2)(z -z,
T t=0 T t=0

9 Notably, for a Bayesian agent with a stronger prior tilt toward particular models or individual
factors or predictors, our framework can be adjusted to accommodate an unequal prior allocation.

10 Using statistics from the actual sample to specify some of the parameters of the prior distri-
bution is commonly termed “empirical Bayes” (Robbins (1956, 1964)). Our prior specification draws
on Kandel and Stambaugh (1996), Pastor and Stambaugh (1999, 2000, 2002a, 2002b), Avramov
(2002), and Avramov and Wermers (2006).
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y =T ;yt \Z =7 ;()’t - =), 9)

where y; = [r}, f/]'.

The prior sample is also weighted against predictability by macro variables
and against mispricing. Thus, on the basis of equation (3), regressing r; on a
constant term, z;_1, f;, and the interaction terms f; ® z;_; yields zero estimates
for oy, a1, and B; in the prior sample. Hence, the prior densities of «g, a1,
and B; are centered around zero. Moreover, as T increases, the informed prior
about underlying parameters becomes tighter. Below, we derive the marginal
likelihood conditioned on Tj, and then provide steps for computing 7.

Similar to Avramov and Chao (2006) and Barillas and Shanken (2018), all
candidate models contain the market factor. The set of test assets is then ad-
justed for each model based on the included factors. Specifically, K denotes the
maximal number of factors. When a candidate model M; contains 2 < K fac-
tors, the other K — & “redundant” factors are included in the test assets in ad-
dition to the N base assets. This is reasonable because a parsimonious model is
helpful only if it prices the remaining assets correctly, including test assets and
traded factors. This specification also ensures that the marginal likelihoods for
all models are conditioned on the same data set.

Marginal likelihoods are first formulated for models with time-varying pa-
rameters. See Internet Appendixes LA and I.B for the unrestricted and the
restricted cases, respectively.!’ The marginal likelihood for the most general
family of models, My, is given by (oppressing the model subscript to ease
notation)

Ty ] L(N+K—k)(To+k)+3k(m+1) [ T T(NJrKk)T
—_— X X

m(DIty = 741 [0 s
Tnix—k(3[T* — k+Dm —1]) || TL(3[T*+N+K -k —m —1]) 5
FNJFK,k(%[To—(k‘I'l)m—l]) Fk %[T0+N+K—k—m—1])

IRR — R/F(F/F)—lF/R|%(To—(k-&-l)m—l) |T0Vf|%(TO+N+K7k7m71) )
|R/R _ &)/W/Wd')|%(T*7(k+1)mfl) |SF|%(T*+N+K7k7m71) : ( 0)

The marginal likelihood terms are all defined in Internet Appendix I.A.

The last two terms in the marginal likelihood reflect the cross-sectional fit,
while the remaining terms describe the penalty factor due to model complexity.
As more factors or predictors are included, model pricing ability could improve.
However, the potential improvement is associated with increasing complexity.
These two conflicting forces on the marginal likelihood indicate that the ulti-
mate inclusion of a variable is subject to a rigorous trade-off.

1 The Internet Appendix is available in the online version of the article on The Journal of
Finance website.
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Internet Appendix II derives the marginal likelihood for the case in
which unconditional models admit the possibility of mispricing (Internet
Appendix II.A) and the case in which mispricing is excluded (Internet
Appendix I1.B). The marginal likelihood for My models is given by

1 T L(N+K—k)(To+k)+1k T L(NAK—k)T
m(D|M2) = n7§T<N+K) x |: O] y |: i|

T T+ x
Tnixk (T —10) || Te(3[T*+N+K —k — 1)) y
Tnik—r(30T0— 1) || Te(3[To + N +K —k —1])
IR'R — R/F(F/F)*lprﬁ(Tofl) | ToV | 3 (To+N+K—k-1) an
IRR — @WWo[3T-D |T*Vf|%(T*+N+K7k71) ‘

Internet Appendix III summarizes the marginal likelihoods for all families
of models, including M; and M3. We note that the marginal likelihood in the
conditional case is invariant to a linear transformation of z; in equation (3).
Internet Appendix IV provides a detailed proof.

C. Setting Ty

To complete the marginal likelihood derivation, we must set 7. First, as
shown in the Internet Appendix V, the parameters oy and «; in equation (3)
obey the joint prior distribution

vec([ao, @11')|Zrr, D ~ N(0, Zrr ® B11), (12)
where By1 is a (1 +m) x (1 + m) matrix given by
L+2V 2+ V42V 25 fVIF -2V 5 4+ V)
B = 15 S0 -17 -1 qo-izm |- (13)
V2 x A+ fV, ) Vx4V f)
The unconditional variance of total mispricing is then equal to

)y
Var(a|Zgg, D) = Var(ap + o(2|Zgg, D) = %(1 +SR2, +m(1+ SR?

max max )) ’
0

(14)

where SR2 __is the largest attainable Sharpe ratio based on investments in the
benchmarks only, and m is the number of predictors the model retains, ranging
from zero for the IID model to M for the all-inclusive model.

Next, following Barillas and Shanken (2018), we formulate the prior on al-

pha according to
o|Xgr, D ~ N(0, nXZgg), (15)

where 1 > 0 controls for the prior spread. It then follows that o' (nZrr) '«
has a chi-square distribution with N + K — %k degrees of freedom. Hence,
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E(a’EI;}%MERR, D) = n(N + K — k). Gibbons, Ross, and Shanken (1989) specify
&/f)gé& as the difference between two squared Sharpe ratios, that is

¢'$phé = SR'(R,F)— SR (F), (16)

—2 —9
where SR (F') is based on benchmark factors only and SR (R, F') employs both
benchmark factors and test assets. In our setup, due to the rotation between
factors and “redundant” factors, (R, F') consists of the maximal number of fac-

tors and test assets. Hence, §}\E/2LR ,F') is identical across all considered models.
In contrast, the second term SR(F') varies across models, attaining its mini-
mum value for the CAPM and its maximum when all K factors are retained.
In the spirit of Barillas and Shanken (2018) and Chib, Zeng, and Zhao (2020),
we set the expected value of the chi-squared distributed variable to the max-
imum value for the admissible Sharpe ratio relative to the market, that is,
SRyax = SRR, F) = tSR(Mkt), where t refers to the prior Sharpe ratio multi-
ple. To illustrate, for T = 1.5, the prior Sharpe ratio for the tangency portfolio
based on a candidate model is 50% higher than the market Sharpe ratio.
It then follows that

E(o/Sppa|Zgrr. D) = n(N + K — k) = (¢* — 1)SR*(Mkt). (17)
The parameter 7 is thus given by

(r? — 1)SR2(Mkt)

N+K—%) (18)

77:

Finally, equating the variance of « in the hypothetical sample (equation (14))
with the prior variance in equation (15) and using 5 from equation (18), we
obtain

(N+K —k)(1+SR2,, +m(1+SR2,)))

To= (r? — 1)SR*(Mkt) ' (19

By setting T, we conclude the derivations for the prior density. Thus, we also
conclude the derivations for the posterior probability.

The resulting prior is sound. First, it is informed for the comprehensive pa-
rameter space. Moreover, model pricing ability can improve as more predictors
are included. Hence, the prior is more strongly weighted against time-varying
parameters because Tp and m are positively related. Likewise, when the ad-
missible squared Sharpe ratio increases, the prior is more strongly weighted
against mispricing. Recall also from the marginal likelihood expressions that
including more factors beyond the market or including more predictors leads to
a higher penalty. Thus, the posterior probability is weighted against deviations
from the unconditional CAPM.

Our prior specification for « resembles that of Pastor and Stambaugh (2000),
a|X ~ N(0,02(% Xgr)), where o reflects the degree of beliefs in the pricing
model and s? is the cross-sectional average of the test asset residual variances.
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The prior on « is proportional to Xzr to avoid exploding Sharpe ratios. Note
that in Péstor and Stambaugh (2000), the quantity 'S e could grow with
the addition of more test assets while we bound that expression. The following
relation is useful to map o2, the prior confidence in model pricing ability, into
the length of the hypothetical sample:

2
To = 2 (1+SR2, +m(1+SR2,,)). (20)

Oy

Internet Appendix V derives T} for other asset pricing model specifications, as
described in Table I.

In the empirical experiments that follow, we exclusively use factors as test
assets, as in Barillas and Shanken (2018) and Chib, Zeng, and Zhao (2020).
That is, we consider the special case in which N = 0. At the same time, the
developed setup is flexible enough to include incremental test assets. Thus,
the number of test assets is K — k, the number of factors that are not included
on the right-hand side of regression equation (3).

D. Additional Remarks on the Methodology

We make four additional remarks on the methodology. First, the litera-
ture acknowledges that asset pricing inferences could be sensitive to the set
of test assets. As noted above, in the empirical analysis, when a model con-
tains % factors, the remaining 14 — & “redundant” factors become the test as-
sets. While our methodology allows us to include additional test assets, such
as characteristic- and industry-sorted portfolios, we focus exclusively on fac-
tors as test assets to assess their relative performance. Our choice of test assets
draws on Barillas and Shanken (2017), who suggest that the set of test assets
is irrelevant for model comparison, that is, whether each model can price the
factors in another model. Instead, only factor returns are required to conduct
a relative test of model performance.

Second, we model stock return innovations as conditionally normal, while
Arnott et al. (2019) show that the vast majority of factor returns are fat-tailed.
However, the predictive distribution of stock returns in our setup departs sub-
stantially from normality. When integrating out the parameter space, the dis-
tribution of stock returns becomes Student-t. Further accounting for model
uncertainty makes the predictive distribution even more fat-tailed due to mix-
ing various ¢ densities. In particular, one can draw returns from the predictive
distribution in three steps: (i) draw a factor model by generating a uniform
random variable to select a model based on cumulative model posterior prob-
abilities, (ii) conditioned on the model, draw underlying parameters from the
joint normal-inverted-Wishart densities, and (iii) conditioned on the parame-
ters, draw returns from a normal distribution. While the predictive distribu-
tion can be simulated only by repeating these three steps, we have successfully
derived analytic expressions for the vector of mean returns and the covariance
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matrix.!> We acknowledge that departing from the assumption of normally
distributed asset return innovations could possibly reduce the implicit penalty
for models with skewed or fat-tailed factors. Hence, experimenting with suit-
able densities for asset returns could establish a promising avenue for fu-
ture research.

Third, while we develop a prior in the context of cross-sectional asset
pricing, for completeness, it would be useful to describe informed priors in-
spired by time-series econometrics. To start, Kandel and Stambaugh (1996)
center the prior on the predictive regression R? around zero. Wachter and
Warusawitharana (2009, 2015) further develop the Kandel-Stambaugh no-
predictability prior. Innovative priors are also proposed by Pastor and Stam-
baugh (2009), who impose a negative correlation between the innovations
in predictive regressions and expected returns to maintain mean reversion,
Avramov, Cederburg, and Lucivjanska (2017), who propose taking cues from
various consumption-based models for understanding the riskiness of equities
over the long run, and Giannone, Lenza, and Primiceri (2015), who focus on
coefficients in vector autoregressions.!® The latter approach can motivate per-
sistent factor risk premia and factor loadings modeled as latent variables. We
leave this potentially interesting channel for future work.

Fourth, the prior specification requires the choice of t, which is at the discre-
tion of the econometrician. Following Barillas and Shanken (2018), the prior
Sharpe ratio multiples take the values = 1.25, 1.5, 2, and 3, while 1.5 is the
baseline case. An alternative data-driven approach to choose 7, which is ag-
nostic to economic restrictions, can be implemented by splitting the sample
data into training, validation, and testing subsamples. The optimal 7 is then
chosen in the spirit of tuning machine-learning hyperparameters by consider-
ing various values for t in the training sample, while the one recording opti-
mal model ability in the validation is selected. Empirical experiments are then
based on the test sample. We follow the first approach, which is more econom-
ically meaningful.

II1. Data

We focus on 14 representative asset pricing factors that are prominent in
the literature. We begin with the Fama-French five-factor model (Fama and
French (2015)) that consists of the market (MKT), size (SMB), value (HML),
profitability (RMW), and investment (CMA) factors, and augment it with mo-
mentum (MOM, Carhart (1997) and Fama and French (2018)). We also include
two behavioral factors, namely, PEAD and financing (FIN) from Daniel, Hirsh-
leifer, and Sun (2020). The additional factors include QMJ (Asness, Frazzini,

12 Model-specific first two moments are derived in the Internet Appendix VIII. Moments for the
integrated model follow through equations (4)—(6).

13 Note that time-series goodness of fit, even in asset pricing regressions, does not translate into
cross-sectional pricing ability, a point made by Chen, Roll, and Ross (1986). Thus, in our setup, it
is the Sharpe ratio that plays a dominant role in formulating the prior, while the above-mentioned
papers focus on either R? or autocorrelation.
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and Pedersen (2019)), BAB (Frazzini and Pedersen (2014)), mispricing factors
related to management (MGMT), and performance (PERF) from Stambaugh
and Yuan (2017), liquidity (LIQ, Pastor and Stambaugh (2003)), and interme-
diary capital (ICR, He, Kelly, and Manela (2017)).14

We follow Welch and Goyal (2008) and employ 13 macro predictors, including
dividend price ratio (dp), dividend yield (dy), earnings price ratio (ep), dividend
payout ratio (de), stock variance (svar), book-to-market ratio (bm), net equity
expansion (ntis), yield on Treasury bills (¢6]), long-term yield (Izy), long-term
rate of returns (/¢r), term spread (¢ms), default yield spread (dfy), and inflation
(infl). Internet Appendix Table IA.I provides detailed definitions for each factor
(Panel A) and macro predictor (Panel B).

The sample period ranges from June 1977 to December 2016 for a total of
475 monthly observations. Internet Appendix Table IA.Il, Panel A, reports the
mean, median, and standard deviation of monthly factor returns, as well as
the monthly CAPM « and its corresponding #-statistics. All factors have pos-
itive average returns, ranging from 0.22% per month for SMB to 1.13% for
ICR. While ICR has the highest average return, it also has the highest volatil-
ity, followed by MOM, while all other factors are less volatile than the market
portfolio. All factors, except for SMB, display statistically significant and eco-
nomically sizable CAPM «. BAB yields the highest CAPM «, followed by FIN
and PERF.

In addition, the correlations between factor returns range between —0.55
(between MKT and QMJ) and 0.81 (between MKT and ICR). As expected,
value- and investment-related factors such as HML, CMA, FIN, and MGMT
are highly correlated. In addition, momentum- and profitability-related fac-
tors such as RMW and QMdJ, MOM and PERF, and QMdJ and PERF also exhibit
high correlations.

Internet Appendix Table IA.II, Panel B, reports the mean, median, standard
deviation, and AR(1) coefficient of the monthly macro predictors. Most predic-
tive variables are highly persistent with AR(1) coefficients above 0.94, except
svar, ltr, and infl. Nevertheless, all AR(1) coefficients are less than one.

IV. Probability Analysis
A. Predictive Regressions

To reinforce the case for time-varying parameters, we first apply the
Bayesian approach to multivariate predictive regressions. Internet Ap-
pendix VII.A provides a detailed derivation of posterior probabilities in a pre-
dictive regression setting. Some combinations of macro predictors are jointly
redundant. For instance, the dividend payout ratio (de) is the difference be-
tween the dividend-price ratio (dp) and the earnings-price ratio (ep). Therefore,
among the 8 (= 2%) possible inclusion/exclusion combinations, we restrict the

14 We consider the tradable version of the LIQ and ICR factors to facilitate model interpretation
and comparison.

85UB017 SUOWILIOD 3A1e81D 8|qedljdde ay) Aq peusenob ase ssjoie YO ‘s J0 S8|ni o AreiqiT8uliuO A8|IM UO (SUOTHPUOD-PUR-SLLBILI0D A3 1M ARIq 1 U1 IUO//SANY) SUOIPUOD PUe SWiB | 3y} &8s *[£202/50/60] Uo Ariqiauljuo AB|1M ‘SeLeiqi AVseAlun asndels Ad 92zET HOTTTT'OT/I0p/wod A8 M Areiq puljuo//Sdny wouy papeojumod ‘€ ‘€202 ‘T9Z90VST



1612 The Journal of Finance®

model universe to five combinations: one without any predictor, three with only
one predictor, and one with two predictors. Similarly, the term spread (¢ms) is
the difference between the long-term yield (/zy) and the yield on Treasury bills
(¢bl), and hence, we consider only five models. The remaining seven predic-
tors contribute 27 combinations. The model space therefore consists of 3,200
(= 25 x 27) combinations for (i) including macro predictors only and (ii) includ-
ing macro predictors with possible interactions between predictors. A third
scenario includes macro predictors with and without interactions. In that case,
we consider 6,399 (= 2 x 25 x 27 — 1) combinations that are the union of the
first two scenarios while excluding the overlapping intercept-only model.

A posterior probability is assigned to each candidate model. The Bayesian
routine allows us to evaluate the relative importance of each individual pre-
dictor by its cumulative inclusion probability, given by A'P. For the first two
scenarios, Ais a 3, 200 x 13 matrix representing all forecasting models by their
unique combinations of zeros and ones, with zeros for the exclusion and ones
for the inclusion of predictors, respectively, and P is a 3,200 x 1 vector in-
cluding posterior probabilities for the models. For the third scenario, A is a
6,399 x 13 matrix and Pis a 6, 399 x 1 vector.

Internet Appendix Table IA.III presents the cumulative posterior probabil-
ities for the macro items in predictive regressions. For the case of no inter-
action, the inclusion probability is approximately 100% for the dividend yield
(dy), followed by stock variance (svar) at 95%, the earnings-price ratio (ep),
the dividend-payout ratio (de), and the long-term rate of return (l¢r) at 85%.
Moving to the case with interactions, dy, svar, and the default yield spread
(dfy) all have an inclusion probability close to 100%. The inclusion of two stock
characteristics, namely, dy and svar, is strongly supported by the data regard-
less of the model specification. In contrast, the cumulative posterior probabil-
ities for the book-to-market ratio (bm), the yield on Treasury bills (¢b]), ltr,
and the term spread (¢ms) drop significantly upon considering interactions.
Moreover, the probability of including interactions is unity, suggesting that fu-
ture returns depend on levels, squared values, and interactions between pairs
of macro predictors. Overall, the stylized findings from predictive regressions
motivate considering factor models with time-varying parameters.

B. Factor Models

We next apply our approach to conditional and unconditional asset pricing
models, per Section II.B. The experiments are based on 14 asset pricing factors
and 13 macro predictors. Panel A of Table I lists the families of candidate
models considered in the paper. We restrict the model space by including the
market as a factor (rather than a test asset) in all specifications except the
single combination in which all factors are excluded (and only macro pre-
dictors serve as explanatory variables). Starting with unconditional models,
the initial model space contains 2!3 + 1 (= 24~! + 1) combinations. We also
discard the combination with all factors included and no factor as a test asset.
Therefore, the final model space contains 22 (= 2! + 1 — 1) unconditional
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Figure 1. Cumulative posterior probabilities of asset pricing models. This figure plots
the cumulative posterior probabilities for the universe of candidate models in a BMA framework
for different values of 7. The candidate models My to My are specified in Table I. The cumula-
tive posterior probabilities for models M; to M4 are defined in equations (IA.72), (IA.64), (IA.41),
and (IA.30) in the Internet Appendix, respectively. (Color figure can be viewed at wileyonlineli-
brary.com)

combinations for both M; and Ms. For conditional models specified by M3 and
My, each includes 23 x (25 x 27 — 1) combinations for inclusion/exclusion of
the factors and predictors.!® In sum, the integrated model accommodates a
collection of over 52 million candidate models.'6

We start by examining model probability. If a few models record sufficiently
high posterior model probabilities, model uncertainty is not a primary concern,
and model selection can deliver the right guidance about the factors and pre-
dictors that matter most. In contrast, if a large number of candidate models
have meaningful probabilities, accounting for model uncertainty is essential
and rationalized from Bayes’ rule. We first compute the posterior probability
for each candidate model. We then rank all models based on their probabilities
from highest to lowest.

Figure 1 plots the cumulative posterior probabilities for the universe of can-
didate models under the various prior Sharpe multiples, namely, t = 1.25, 1.5,
2, and 3, where T = 1.5 is our baseline case. We find that the 10 (100, 500)
top-ranked individual models account for a cumulative posterior probability
of 30% (76%, 93%), suggesting that there is no clear winner across the entire

15 As previously discussed, there are 213 unconditional combinations. In addition, as noted in
Section IV.A, some macro predictors are jointly redundant, resulting in 25 x 27 predictor combina-
tions. We further exclude the single combination including no predictor, that is, the unconditional
models specified in M; and My, resulting in 25 x 27 — 1 predictor combinations.

16 The total number of competing models in M; to My is computed as 2 x 213 + 2 x 213 x (25 x
27 — 1) = 52, 428, 800.
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space of potential factor models. Instead, a plethora of models that differ in the
inclusion of factors, predictors, and mispricing record a positive and meaning-
ful probability of governing the joint distribution of stock returns. Only when
we adopt a prior Sharpe multiple of 3 do the best 10 models achieve a non-
trivial cumulative posterior probability of 88%. From a practical investment
management perspective, extremely high Sharpe ratios relative to the mar-
ket are unlikely. The evidence therefore suggests that multiple distinct models
could govern the joint dynamics of stock returns, which reinforces the role of
model uncertainty.

Beyond probabilities for factor models, we next compute the cumulative pos-
terior probabilities of individual factors and macro predictors. In particular,
the posterior inclusion probability of a factor is given by

L
P(k included|D) = > " P(M, ID)L 1 included in M,}- @D
=1

Similarly, the posterior inclusion probability of a predictor is given by

L
P(m included|D) = ZP(MI ID)1 {1, included in M, }- (22)
-1

The results are reported in Table II. Panel A presents the cumulative poste-
rior probabilities for the factors under different prior Sharpe ratio multiples.
Several findings are worth noting. First, consider the baseline case of T = 1.5.
We find that PEAD and QMJ display a posterior inclusion probability of close
to 100%, followed by CMA, SMB, ICR, and MGMT—all of which achieve a
posterior inclusion probability of at least 90%, indicating their prominence in
pricing other factors beyond the market. For perspective, among the six factors
proposed prior to 2015, only SMB displays high inclusion probability, while five
of the eight factors proposed after 2015 exhibit high inclusion probability, sug-
gesting that despite the expanding factor zoo, several new factors, both funda-
mental and behavioral, offer incremental ability to price the existing factors.

Second, PEAD, QMJ, and ICR stand out across different priors, with an in-
clusion probability of at least 93% in all cases. Moving to SMB, CMA, and
MGMT, the inclusion probability is high for low ¢ values but diminishes for
high t values. In contrast, BAB exhibits high inclusion probability only for
t = 3, when the prior is tilted toward rather extreme Sharpe ratios. It would
thus be difficult for the BAB factor to clear prior asset pricing thresholds, such
as reasonable Sharpe ratios (Ross (1976)). Taken together, the pricing abili-
ties of widely explored factors depend on one’s prior views about how large the
Sharpe ratio could be.

Third, across all t values, five to seven factors have a posterior inclusion
probability of at least 90%, although the identified factors could vary. Our
findings support a parsimonious model advocated by the empirical literature,
while factors with high inclusion probability originate from distinct economic
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Table IT
Posterior Probabilities of Factors and Predictors in Asset Pricing
Models

This table presents results based on the universe of candidate models using the BMA procedure
for different values of 7. The candidate models M; to My are specified in Table I. Panel A presents
the cumulative posterior probabilities for the factors, as defined in equation (21). Panel B presents
similar statistics for the macro predictors, as defined in equation (22). Panel C reports other model
features, including: (i) the conditional model probability, defined as the sum of posterior probabil-
ities for all models included in Mg and My, (ii) the mispricing probability, defined as the sum of
posterior probabilities for all models included in My and My, and (iii) the equal-weighted average
of hypothetical sample size T}, as defined in equation (19), and (iv) the equal-weighted average
of shrinkage, defined as Tg‘%' Internet Appendix Table IA.I provides detailed definitions for each

variable.
Panel A: Posterior Probabilities of Factors
=125 t=15 T=2 =3
MKT 1.00 1.00 1.00 1.00
SMB 0.98 0.94 0.97 0.11
HML 0.30 0.17 0.03 0.00
RMW 0.01 0.00 0.00 0.00
CMA 0.97 0.97 0.35 0.00
MOM 0.65 0.39 0.01 0.00
PEAD 1.00 1.00 1.00 1.00
FIN 0.68 0.51 0.17 0.00
QMJ 1.00 1.00 1.00 1.00
BAB 0.19 0.15 0.50 0.95
MGMT 0.98 0.90 0.21 0.00
PERF 0.67 0.76 0.89 0.96
LIQ 0.89 0.57 0.77 0.97
ICR 0.97 0.93 0.94 0.97
Panel B: Posterior Probabilities of Macropredictors

=125 t=15 T=2 =3
dp 0.35 0.22 0.06 0.01
dy 0.67 0.68 0.75 0.95
ep 0.35 0.40 0.75 0.84
de 0.28 0.30 0.46 0.29
svar 0.17 0.33 0.27 0.08
bm 0.02 0.00 0.04 0.06
ntis 0.14 0.15 0.21 0.96
tbl 0.10 0.03 0.06 0.90
Ity 0.89 0.97 0.94 0.10
Itr 0.01 0.00 0.00 0.00
tms 0.02 0.00 0.04 0.90
dfy 0.03 0.01 0.00 0.00
infl 0.00 0.00 0.00 0.00
(Continued)
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Table II—Continued

Panel C: Other Model Features

=125 =15 T=2 =3
Conditional Model Probability 1.000 1.000 1.000 1.000
Mispricing Probability 0.641 0.686 0.579 0.057
Average Ty 4,693 2,112 880 330
Average Shrinkage % 0.897 0.799 0.630 0.398

foundations rather than an established asset pricing model. For instance,
PEAD, QMJ, and ICR are proposed by three independent works, and their
combination has not been examined in the previous literature.

Finally, RMW appears redundant. This could be due to the high correlation
between RMW and QMJ (0.75 in Panel A of Internet Appendix Table IA.II),
as profitability is also one of the quality characteristics in QMJ.!” Empirically,
QMJ dominates RMW in pricing other factors, and thus, we observe persistent
inclusion for QMdJ and exclusion for RMW.

Panel B of Table II implements a similar analysis for the macro predictors.
Perhaps not surprisingly, in the presence of asset pricing factors, the average
inclusion probability is considerably lower for macro predictors than for fac-
tors. Taking the baseline case of T = 1.5 as an example, the long-term yield (Izy)
has an inclusion probability of 97%, followed by the dividend yield (dy) with an
inclusion probability of 68%. Moving to t = 3, more macro predictors display
high inclusion probability, with net equity expansion (ntis), dy, the yield on
Treasury bills (¢bl), and the term spread (¢ms) having an inclusion probabil-
ity of at least 90%. The rising inclusion probability with practically infeasible
Sharpe ratios provides important evidence suggesting strong in-sample pre-
dictive power of macro items could be associated with only mild forecasting
power out-of-sample. Last, the book-to-market ratio (bm), long-term rate of re-
turn (l¢tr), default yield spread (dfy), and inflation (infl) are always discarded,
regardless of the prior. Evidence from Panel B therefore reinforces the view
that asset pricing factors should be augmented with macro predictors to better
capture cross-sectional and time-series effects in average returns.

In addition to the cumulative inclusion probabilities for asset pricing factors
and macro predictors, we explore several other model features. The results
are tabulated in Panel C of Table II. We start with the probability of factor
models with time-varying parameters, defined as the sum of posterior prob-
abilities for all models included in M3 and My. The conditional models dis-
play an aggregate posterior probability of 100%, implying that our Bayesian
approach uniformly favors models with time-varying parameters, even when
prior beliefs are weighted against the inclusion of macro predictors.!® Our find-

1TThe QMJ factor goes long high-quality stocks and short low-quality stocks, where high-
quality stocks are those with high profitability, growth, and safety.

18 Note that by construction, the sum of the posterior probabilities for all models included in M;
to M equals one. As previously noted, there are 2 x 213 unconditional models in M; and My and
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ings further highlight the importance of incorporating nonlinearities in asset
pricing models, especially by conditioning on the macroeconomic states—a
point also emphasized by Chen, Pelger, and Zhu (2023) in a nonparametric
setup. Furthermore, our results complement prior work that focuses on the
nonlinear relationship between firm characteristics and returns (e.g., Frey-
berger, Neuhierl, and Weber (2020)) and that employs a conditional factor
model in which the factor loadings are nonlinear in firm characteristics (e.g.,
Gu, Kelly, and Xiu (2021)).

Another essential feature in the BMA framework is the probability of model
mispricing, defined as the sum of posterior probabilities for all models included
in Mg and My. For T = 1.25, 1.5, and 2, the mispricing probability varies be-
tween 58% and 69%. Even for sensible prior Sharpe ratios, the findings clearly
highlight a prominent mispricing component in factor models. This evidence
indicates that zero-alpha models selected from the set of factors and predictors
that we analyze may not adequately explain cross-sectional and time-series
effects in stock returns. Additionally, note that the probability of mispricing
evolves only from conditional models, as the unconditional counterparts record
near-zero probability. Overall, the evidence suggests that factor loadings, risk
premia, and mispricing all vary with macroeconomic conditions.

We also report the (equal-weighted) average of (i) hypothetical sample size
Ty, which is inversely related to r as defined in equation (19), and (ii) the
shrinkage intensity, defined as ;‘1 = T(?;OT. The amount of shrinkage increases
when T} increases or, equivalently, when 7 declines.'® Intuitively, when the
prior Sharpe ratio multiple is low, more shrinkage is applied to penalize mis-
pricing and time-varying parameters. For t = 1.5 (r = 3), the average weight of
the actual sample is approximately 20% (60%), and the remaining 80% (40%)
is assigned to the hypothetical sample, where o, o1, and B; are set to zero in
equation (3).

In sum, a plethora of models that differ in the inclusion of factors, predictors,
and mispricing record a positive and meaningful probability of governing the
joint dynamics of stock returns. We show that the Bayesian approach provides
a reasonable setup for analyzing the cross-section of expected stock returns in
the presence of model uncertainty.

2 x 213 x (25 x 27 — 1) conditional models in M3 and My. Therefore, the cumulative probability
for unconditional models is 3 5i27 = 3.125e-4, a priori. However, the cumulative posterior probabil-
ity for unconditional models is 9.15e-50 for t = 1.5, suggesting that conditional models uniformly
dominate their unconditional counterparts. In addition, we assess the presence of unconditional
models among the top-ranked individual models. While we expect to see, a priori, 3,125 uncon-
ditional models among the top 10 million candidate models, we fail to detect any unconditional
model based on posterior probabilities. The results are similar for alternative t values.

19 Specifically, the posterior regression means are a weighted average of estimates in the actual
sample (with a weight of TOTT) and the hypothetical sample (with a weight of TOT%), as shown in
equations (IA.23) and (IA.24) for unrestricted models (Internet Appendix I.A) and equation (IA.39)
for restricted models (Internet Appendix I.B). Therefore, higher 7)) implies more shrinkage toward
the hypothetical sample, that is, the model estimates are weighted against mispricing.
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V. Out-of-Sample Performance
A. Efficient Portfolios: Sharpe Ratio

In this subsection, we assess the out-of-sample performance of the integrated
model. Our analysis is based on mean-variance efficient portfolios that are de-
rived form the predictive distribution that integrates out the within-model pa-
rameter space (estimation risk) and the model space (model disagreement).
We study performance through Sharpe ratios and downside risk measures.
For comparison, we consider four benchmark models that are widely used by
academics and practitioners: (i) the CAPM, which adjusts only for MKT, (ii)
the Fama-French three-factor model (FF3), which consists of MKT, SMB, and
HML (Fama and French (1993)), (iii) the Fama-French six-factor model (FF6)
that comprises MKT, SMB, HML, RMW, CMA, and MOM (Fama and French
(2018)), and (iv) the AQR six-factor model (AQR6) that consists of the MKT,
SMB, HML, MOM, BAB, and the QMdJ factors (Frazzini, Kabiller, and Ped-
ersen (2018)). We also consider the three highest posterior probability models
based on the Bayesian approach. Our prior is that the Bayesian approach could
deliver stable out-of-sample performance, given (i) its conceptual foundation
from Bayes’ rule and (ii) its empirical merits in identifying competent models.

Our first experiment examines the Sharpe ratio of the tangency portfo-
lio. We divide the full sample into two periods, namely, the in-sample period
and the out-of-sample performance period. Following Barillas and Shanken
(2018), we consider two in-sample periods that correspond to half of the sample
(denoted as %) and two-thirds of the sample (denoted as %).20 For the bench-
mark models, we use the in-sample period returns to derive the tangency port-
folio weights and apply the optimal weights to the out-of-sample returns. We
can then compute the out-of-sample Sharpe ratios. In the Bayesian setup, we
use all data in the in-sample period to compute posterior probabilities and pre-
dictive moments based on the integrated model. A detailed description of the
computation of the model-specific predictive moments is provided in the Inter-
net Appendix VIII.?!

We tabulate the in-sample and out-of-sample annualized Sharpe ratios
in Table III, where Panel A corresponds to the four benchmark models and
Panel B to the models based on the Bayesian approach with a prior Sharpe
multiple of r = 1.5. The columns “EST” report the in-sample Sharpe ratio, and
the columns “O0S” report the out-of-sample Sharpe ratio. For perspective,
take % to be the in-sample period. The integrated model (denoted as BMA)

20 The in-sample period that corresponds to g (%) ranges from June 1977 to December 1997

(December 2013), for a total of 247 (319) monthly observations.

21 The derivation builds on Avramov (2004) and Avramov and Chordia (2006) with several im-
portant modifications to account for economically informed prior beliefs and model integration. The
tangency portfolio for all models is constructed using the 14 benchmark assets that rotate between
factors and test assets, as noted earlier, depending on the factor model. The predictive moments
are computed based on equations (IA.115) and (IA.116) for factors and equations (IA.117), (IA.118),
(IA.119), and (IA.120) for test assets. Moments for the integrated model follow from equations (4)—
(6).
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Table IIT
Out-of-Sample Sharpe Ratio

Panel A presents the in-sample and out-of-sample annualized Sharpe ratio for the tangency port-
folio based on four benchmark models CAPM, FF3, FF6, and AQR6. The columns “EST” report the
in-sample Sharpe ratio computed in the full sample (7"), as well as in the in-sample periods that
correspond to half of the sample (g) and two-thirds of the sample (%). The columns “O0S” report
the out-of-sample Sharpe ratio. We use the in-sample period returns to determine the tangency
portfolio weights and apply the optimal weights to the out-of-sample returns. Panel B presents
similar statistics for the three top-ranked individual models based on the Bayesian procedure (de-
noted Top 1, Top 2, and Top 3) and the integrated model (denoted BMA). The investment universe
consists of 14 factors as listed in Panel A of the Internet Appendix Table IA.I, and we employ a
prior Sharpe multiple of t = 1.5. In the Bayesian setup, we use all data in the in-sample period
to compute posterior probabilities and predictive moments based on the integrated model. Panels
C and D report similar statistics as Panels A and B, where we further impose the Regulation-T
constraint. In particular, the sum of the absolute tangency portfolio weights is set to be less than
or equal to two, 23;11 |w;| < 2. Panels E and F report similar statistics as Panels A and B, where
we replace the tangency portfolio with the global minimum variance portfolio.

T

N}
N
N

Model EST EST 008 EST 008

Panel A: Tangency Portfolio Based on Benchmark Models

CAPM 0.489 0.601 0.375 0.468 0.540
FF3 0.729 1.111 0.468 0.960 0.431
FF6 1.317 2.180 0.676 1.5618 0.798
AQR6 1.679 2.803 0.954 1.829 1.152

Panel B: Tangency Portfolio Based on Bayesian Models

Top 1 2.249 3.305 1.009 2.616 1.226
Top 2 2.233 3.280 1.027 2.699 1.425
Top 3 2.100 3.337 1.019 2.567 1.163
BMA 2.212 3.228 0.968 2.542 1.240

Panel C: Tangency Portfolio Based on Benchmark Models with Regulation-T

CAPM 0.489 0.601 0.375 0.468 0.540
FF3 0.706 1.057 0.456 0.872 0.465
FF6 1.017 1.272 0.430 1.094 0.367
AQR6 1.168 1.699 0.491 1.240 0.785

Panel D: Tangency Portfolio Based on Bayesian Models with Regulation-T

Top 1 1.673 2.150 0.872 1.884 1.425
Top 2 1.688 2.161 0.884 1.840 1.332
Top 3 1.251 2.223 0.860 1.5681 1.013
BMA 1.621 2.137 0.617 1.772 0.979

Panel E: Global Minimum Variance Portfolio Based on Benchmark Models

FF3 0.662 0.994 0.483 0.923 0.401
FF6 1.254 2.038 0.672 1.423 0.818
AQR6 1.507 2.358 0.988 1.593 0.700

(Continued)
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Table III—Continued

Panel F: Global Minimum Variance Portfolio Based on Bayesian Models

Top 1 1.897 2.850 0.998 2.502 0.924
Top 2 1.897 2.849 0.994 2.391 0.896
Top 3 1.817 2.858 1.002 2.382 0.870
BMA 1.925 2.923 1.040 2.433 1.101

outperforms the benchmark models both in-sample and out-of-sample. For
instance, the integrated model generates an in-sample annualized Sharpe
ratio of 2.542, while the best benchmark model AQR6 delivers an annualized
Sharpe ratio of 1.829. The integrated model also continues to deliver superior
out-of-sample performance, with an annualized Sharpe ratio of 1.240, which
offers an improvement of 8% compared to the best benchmark model AQRS6,
which has an annualized Sharpe ratio of 1.152.22

In addition, the three top-ranked individual models (denoted as Top 1, Top 2,
and Top 3), the three models with the highest posterior probability, also deliver
sound out-of-sample performance. The annualized Sharpe ratio ranges from
1.163 to 1.425 out-of-sample, indicating a 1% to 24% improvement from the
best benchmark model AQR6. Note that the in-sample posterior probabilities
of the top-ranked models are indistinguishable, suggesting that they are vir-
tually equally likely to govern the joint distribution of stock returns. However,
we observe more variation in their out-of-sample performance. For instance,
the second-ranked (i.e., Top 2) model turns out to be the best performing and
significantly outperforms AQRG6, while the third-ranked model only edges out
AQRG6. Importantly, the integrated model does not rely on the crucial assump-
tion that a single or a few top-ranked models must be correct while all other
specifications should be discarded. For perspective, the integrated model out-
performs two of the three top-ranked individual models.

Panels C and D have the same layout as Panels A and B, but we further
impose the Regulation-T constraint. In particular, to ensure that the tangency
portfolio does not rely on extreme, possibly infeasible long and short positions
in real time, we require that the sum of absolute tangency portfolio weights
less than or equal to two, that is, Z}il lw;| < 2. As expected, the Regulation-
T constraint reduces the Sharpe ratio for nearly all models, both in-sample
and out-of-sample.

22 While we focus on four observable factor models as benchmarks, we further consider the
tangency portfolio based on the unconditional model with 14 factors. Taking % to be the in-sample
period, the integrated model continues to outperform the unconditional model (annualized Sharpe
ratio of 1.019) by 22%. When we examine the equal-weighted portfolio with 14 factors in the full
sample, we find an annualized Sharpe ratio of 1.705 and a monthly FF6-adjusted (AQR6-adjusted)
return of 0.215% (0.121%). For perspective, the integrated model delivers an annualized Sharpe
ratio of 2.212 and a monthly FF6-adjusted (AQR6-adjusted) return of 0.324% (0.220%), indicating
a 30% to 82% improvement across different performance metrics. Our results highlight that the
strong out-of-sample performance of the integrated model goes beyond the positive alphas of the
asset pricing factors in the full sample.
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Taking % as the in-sample period, the integrated model produces an out-of-
sample annualized Sharpe ratio of 0.979 and outperforms all benchmark mod-
els by a significant margin. For instance, the annualized Sharpe ratio is 0.785
for the best benchmark model AQR6, indicating that the integrated model out-
performs by 25% after applying sensible economic restrictions. Thus, when ef-
ficient portfolios are admissible, the performance gap between the integrated
model and benchmark models widens. Furthermore, we continue to find su-
perior performance among top-ranked individual models, which outperform
AQR6 by 29% to 82%. Taken together, the results suggest that the Bayesian
approach is able to detect outperforming models in the presence of economic
restrictions.

With a shorter in-sample period (%), we observe much lower out-of-sample
Sharpe ratios as well as larger gaps between in-sample and out-of-sample per-
formance across nearly all model specifications with and without economic re-
strictions. This is possibly due to overfitting attributable to the short in-sample
period (247 months).2? Importantly, all models based on the Bayesian approach
deliver higher Sharpe ratios than the best benchmark model AQR6 with and
without economic restrictions, especially in the former case. For instance, the
integrated model outperforms AQR6 by 26%, and the top-ranked individual
models outperform AQR6 by 75% to 80% after imposing the Regulation-T con-
straint. Overall, while we focus on the % case to interpret the findings, the
Bayesian approach continues to deliver superior and more admissible out-
of-sample performance than all benchmark models for the shorter in-sample
period.

Our next experiment focuses on the GMVP, which relies exclusively on the
covariance matrix formulated in equation (5). If model uncertainty has mean-
ingful asset pricing implications, the GMVP based on the integrated model
should provide investment payoffs characterized by lower risk measures com-
pared to benchmarks.?* We report the results in Panels E and F of Table III,
with Panel E corresponding to the benchmark models and Panel F to models
based on the Bayesian approach.

While in the following subsection, we analyze risk measures associated with
the minimum variance portfolio, and we briefly describe the out-of-sample
Sharpe ratios. Taking % to be the in-sample period, the integrated model
generates an annualized out-of-sample Sharpe ratio of 1.101 and outperforms
all competing models by a considerable margin. For instance, the integrated

23 There are 14 factors and 11 predictors in total because some macro predictors are jointly
redundant, as previously discussed. The total number of estimated parameters is given by
(K—-RIA+m)1+Ek)+ KkaH] + k(A +m+ k%l), where K denotes the maximal number of fac-
tors (14), and %2 and m denote the number of included factors and predictors, respectively. The
number of estimated parameters varies between 119 (when m = 0) and 812 (when m = 11 and
k="T).

24 Garlappi, Uppal, and Wang (2007) document that in the presence of a stable and significant
degree of ambiguity aversion, the GMVP could play an important role in optimal portfolio choice
because it is not subject to ambiguity about expected returns. While this is not the focus of our
work, our findings extend to ambiguity-averse investors.
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model delivers a 35% higher Sharpe ratio than the best benchmark model
(FF6, annualized Sharpe ratio of 0.818) and 19% higher Sharpe ratio than
the best individual model (Top 1, annualized Sharpe ratio of 0.924). Taken
together, our findings highlight a sizable impact of model uncertainty on the
covariance matrix of stock returns, a novel feature in our BMA setup.

B. Efficient Portfolios: Downside Risk

It is worth evaluating risk and downside risk measures associated with trad-
ing the tangency portfolio and the GMVP.?®> Using % as the in-sample period,
we report the out-of-sample mean, standard deviation, skewness, and excess
kurtosis of the monthly excess returns and the maximum drawdown. Follow-
ing Gu, Kelly, and Xiu (2020), we define the maximum drawdown across the
entire sample as

MDD = max (Y, -Y,), (23)

0<ti<to<T

where Y;, and Y}, refer to the cumulative log return from month 0 to ¢; and
t9, respectively.

We tabulate the results in Table IV, where Panels A and B report the re-
sults for tangency portfolios constructed from benchmark models and models
based on the Bayesian approach with T = 1.5, respectively, and Panels C and
D report similar statistics after imposing the Regulation-T constraint. Given
their economic relevance, we focus on Panels C and D to interpret our find-
ings. First, when compared to benchmark models, the higher Sharpe ratio of
the integrated model can be attributed to a combination of higher returns
and lower return volatility. Second, the integrated model exhibits less nega-
tive skewness, lower excess kurtosis, and a lower maximum drawdown. For
instance, the maximum drawdown across the entire sample is 44% for the in-
tegrated model, while the benchmark models experience a larger drawdown of
51% to 79%. Notably, the top-ranked individual models are more volatile, and
the maximum drawdown varies over a wide range between 32% and 57%.

Panels E and F of Table IV report similar statistics for GMVP, with Panel
E reporting results for GMVP constructed from benchmark models and Panel
F for GMVP constructed from models based on the Bayesian approach with
7 = 1.5. Notably, risk metrics are particularly relevant in the context of GMVP,
as GMVP relies exclusively on the covariance matrix. Several findings are
noteworthy. First, the GMVP based on the integrated model displays less risky
payoffs than the benchmark models. For instance, monthly realized volatil-
ity for GMVPs based on the benchmark models ranges between 0.956% and
2.127%, while it appears to be only 0.756% for the integrated model, indicating
a 21% to 64% volatility reduction. Because expected returns across the various

25 Related work shows that individual anomaly payoffs are prone to large drawdowns. For in-
stance, Daniel and Moskowitz (2016) document that momentum strategies are characterized by
occasional large crashes.
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Table IV
Out-of-Sample Downside Risk

Panel A reports the out-of-sample mean, standard deviation, skewness, and excess kurtosis of the
monthly excess returns, the annualized Sharpe ratio, and the maximum drawdown for the tan-
gency portfolio based on four benchmark models CAPM, FF3, FF6, and AQR6. We employ the
in-sample period that corresponds to two-thirds (%) of the sample. We use the in-sample period
returns to determine the tangency portfolio weights and apply the optimal weights to the out-
of-sample returns. Panel B presents similar statistics for the three top-ranked individual models
based on the Bayesian procedure (denoted as Top 1, Top 2, and Top 3) and the integrated model
(denoted as BMA). The investment universe consists of 14 factors as listed in Panel A of the In-
ternet Appendix Table IA.I, and we employ a prior Sharpe multiple of 7 = 1.5. In the Bayesian
setup, we use all data in the in-sample period to compute posterior probabilities and predictive
moments based on the integrated model. Panels C and D report similar statistics as Panels A and
B, where we further impose the Regulation-T constraint. That is, the sum of the absolute tangency
portfolio weights is set to be less than or equal to two, Zilfl |w;| < 2. Panels E and F report similar
statistics as Panels A and B, where we replace the tangency portfolio with the global minimum
variance portfolio.

Sharpe Excess Maximum
Model Mean Std.Dev. Ratio Skewness Kurtosis Drawdown

Panel A: Tangency Portfolio Based on Benchmark Models

CAPM 0.640 4.110 0.540 —0.699 2.103 51.511
FF3 0.282 2.266 0.431 —0.622 2.797 31.065
FF6 0.223 0.968 0.798 —0.258 0.721 8.778
AQR6 0.305 0.917 1.152 —0.441 2.816 6.577

Panel B: Tangency Portfolio Based on Bayesian Models

Top 1 0.274 0.774 1.226 0.348 2.339 3.860
Top 2 0.338 0.821 1.425 0.396 1.251 2.487
Top 3 0.270 0.804 1.163 0.347 2.129 4.008
BMA 0.277 0.775 1.240 0.001 1.344 5.149

Panel C: Tangency Portfolio Based on Benchmark Models with Regulation-T

CAPM 1.281 8.219 0.540 —0.699 2.103 78.807
FF3 0.708 5.272 0.465 —0.835 3.014 63.947
FF6 0.414 3.911 0.367 -2.017 10.046 50.631
AQR6 0.989 4.361 0.785 -1.213 4.800 58.583

Panel D: Tangency Portfolio Based on Bayesian Models with Regulation-T

Top 1 1.543 3.749 1.425 0.022 2.121 32.254
Top 2 1.482 3.855 1.332 0.395 2.271 37.544
Top 3 1.208 4.134 1.013 —0.589 3.536 57.364
BMA 1.035 3.664 0.979 —0.518 0.928 43.743

Panel E: Global Minimum Variance Portfolio Based on Benchmark Models

FF3 0.246 2.127 0.401 —0.442 2.537 26.997
FF6 0.226 0.956 0.818 0.013 0.813 5.771
AQR6 0.244 1.207 0.700 -0.376 5.156 7.491

(Continued)
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Table IV—Continued

Panel F: Global Minimum Variance Portfolio Based on Bayesian Models

Top 1 0.232 0.871 0.924 0.257 4.180 4.392
Top 2 0.221 0.855 0.896 0.337 3.453 5.823
Top 3 0.205 0.818 0.870 0.289 5.217 4.977
BMA 0.240 0.756 1.101 0.155 3.607 4.988
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Figure 2. BMA model performance. This figure plots the cumulative excess returns on an
initial $1 investment for the market portfolio (MKT) and three tangency portfolios based on
the integrated model. We employ a prior Sharpe multiple of t = 1.5 and consider three in-sample
periods that correspond to the full sample (7"), half of the sample (%), and two-thirds of the sample
(%). The tangency portfolios are levered to the extent that their in-sample return volatility is
the same as that of the market portfolio. The leverage ratios are carried forward to the out-of-
sample periods. The blue dashed lines mark the end of the in-sample periods for g and % (Color
figure can be viewed at wileyonlinelibrary.com)

specifications are not materially different, the lower volatility characterizing
the Bayesian approach translates into a substantially higher out-of-sample
Sharpe ratio. Second, while most benchmark models are negatively skewed,
the integrated model displays positive skewness. Third, the integrated model
exhibits a lower maximum drawdown than all benchmark models. For perspec-
tive, the maximum drawdown for the benchmark models ranges between 6%
and 27%, compared to 5% for the integrated model. The BMA approach there-
fore mitigates the downside risk of both the tangency portfolio and the GMVP.

To better understand integrated model performance over time, Figure 2 plots
the cumulative excess returns of an initial $1 investment for the market portfo-
lio (MKT) and three BMA tangency portfolios with ¢ = 1.5. The BMA tangency
portfolios vary in the in-sample period as previously discussed. We derive a
leverage ratio for each tangency portfolio by equalizing its in-sample return
volatility to the market return volatility during the same period. The lever-
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age ratio is then carried forward to the out-of-sample period.?® This allows us
to compare the performance of BMA portfolios with the market directly. We
find that BMA portfolios significantly outperform the market and experience a
more stable advance over time. Importantly, we observe only modest declines
for BMA portfolios when the overall market drops significantly, consistent with
the high Sharpe ratio and low downside risk out-of-sample. Our findings are
similar across all three in-sample periods.

C. Portfolio Tilts

In addition to the integrated model’s performance as measured by Sharpe
ratio and downside risk, we explore its portfolio tilts. Specifically, we examine
the portfolio weights for each of the 14 factors in the tangency portfolio based
on the integrated model and, more importantly, whether and how the portfolio
choice varies with subsequently realized factor returns over time. Intuitively,
if the tangency portfolio bets on the correct factors, we expect it to tilt toward
subsequently outperforming factors and away from underperforming factors.
Such factor rotation could be particularly valuable on the downside, under-
weighting factors when they subsequently record negative returns.

Table V tabulates the results. We employ the in-sample period that corre-
sponds to two-thirds of the sample (%) and a prior Sharpe multiple of 1.5.
Denote by w;,; the weight of factor % in the tangency portfolio at portfolio for-
mation time ¢, f; ;1 the realized return of factor £ during the holding period
t +1, Corr(wp,, fr++1) the correlation between the tangency portfolio weights
and subsequently realized factor returns. The columns “EST” and “O0S” re-
port the in-sample and out-of-sample results, and the column “OO0S~” focuses
on the subperiod with negative realized factor returns out-of-sample.?’

Several findings are worth noting. First, the tangency portfolio significantly
overweights PEAD, QMdJ, and MGMT factors both in-sample and out-of-sample
compared with an equal-weighted benchmark portfolio. Second, we observe
positive correlations between tangency portfolio weights and realized factor
returns for 9 out of 14 factors out-of-sample, with an average correlation of
4.5%. From the perspective of economic significance, this is a considerable im-
provement relative to the equal-weighted portfolio, which indicates a zero cor-
relation between portfolio weights and realized factor returns. Remarkably,
when focusing on the downside, the correlation between portfolio weights and
subsequently realized factor returns increases to 10.5% during subperiods of
negative realized factor returns. This suggests that the Bayesian setup is in-
strumental in tempering adverse investment outcomes through factor rotation.

26 The leverage ratio is 4.87, 6.37, and 5.00 for the in-sample periods that correspond to the full
sample (7"), half of the sample (g), and two-thirds of the sample (%), respectively.

27 The subperiod is factor-specific, depending on the realized returns for each factor during the
out-of-sample period.

85UB017 SUOWILIOD 3A1e81D 8|qedljdde ay) Aq peusenob ase ssjoie YO ‘s J0 S8|ni o AreiqiT8uliuO A8|IM UO (SUOTHPUOD-PUR-SLLBILI0D A3 1M ARIq 1 U1 IUO//SANY) SUOIPUOD PUe SWiB | 3y} &8s *[£202/50/60] Uo Ariqiauljuo AB|1M ‘SeLeiqi AVseAlun asndels Ad 92zET HOTTTT'OT/I0p/wod A8 M Areiq puljuo//Sdny wouy papeojumod ‘€ ‘€202 ‘T9Z90VST



1626 The Journal of Finance®

Table V
BMA Tangency Portfolio Choice

This table presents the in-sample and out-of-sample tangency portfolio weights (denoted as wy, ;)
and realized factor returns (denoted as f}, ;1) for the 14 factors listed in Panel A of the Internet
Appendix Table IA.I. wy,, is the weight for factor £ in the tangency portfolio at portfolio formation
time ¢, and f;, ;1 is the holding-period return of factor £ at time ¢ + 1. The tangency portfolio is
based on the integrated model with a prior Sharpe multiple of © = 1.5. The columns “EST” report
the in-sample results based on two-thirds of the sample (%). The columns “O0S” report the out-
of-sample results. We use all data in the in-sample period to compute posterior probabilities and
predictive moments based on the integrated model. In addition, we report the correlation between
the tangency portfolio weights and realized factor returns (Corr(wy,;, f;41)) during the in-sample
and out-of-sample periods, as well as the subperiods with negative realized factor returns out-of-
sample (column “O0S™”).

Wt fris1 Corr(wy ¢, fre+1)

EST 00S EST 00S EST 00S 00S~
MKT 0.102 0.110 0.006 0.006 0.220 0.006 —0.337
SMB 0.102 0.109 0.002 0.002 0.311 —0.021 -0.115
HML 0.006 —0.002 0.004 0.001 0.166 0.035 0.156
RMW 0.039 0.034 0.004 0.003 0.052 0.027 0.194
CMA 0.049 0.051 0.004 0.000 0.128 0.004 —0.003
MOM 0.042 0.039 0.009 0.000 0.132 0.318 0.607
PEAD 0.223 0.215 0.008 0.002 0.097 —0.206 —0.304
FIN 0.013 0.009 0.009 0.004 0.054 -0.161 0.014
QMJ 0.181 0.184 0.005 0.004 0.004 0.280 0.536
BAB 0.021 0.022 0.011 0.006 0.125 0.053 —0.089
MGMT 0.148 0.152 0.008 0.001 0.096 —0.027 —0.309
PERF —0.005 —0.002 0.008 0.005 0.190 0.182 0.576
LIQ 0.047 0.045 0.005 0.003 0.163 0.135 0.069
ICR 0.032 0.032 0.014 0.006 0.087 —0.001 0.469

D. Robustness Analyses

Thus far, we have assessed the out-of-sample performance based on the
baseline prior Sharpe multiple of 1.5. As a robustness check, we examine the
sensitivity of our findings to alternative prior Sharpe multiples. Table VI has
a similar layout as Table III, with Panel A corresponding to the unconstrained
tangency portfolio, Panel B to the tangency portfolio with the Regulation-T
constraint, and Panel C to the GMVP. Taking % as the in-sample period by
way of example, the integrated model continues to outperform the best bench-
mark model from Table III across all T values. As shown in Panel A (Panel
B), the out-of-sample annualized Sharpe ratio of the integrated model is 1.208
(0.976),1.271 (1.018), and 1.253 (0.819) when t = 1.25, 2, and 3, while the best
benchmark model AQR6 delivers an out-of-sample annualized Sharpe ratio
of 1.152 (0.785) before (after) applying economic restrictions. The integrated
model outperforms AQR6 by 5% to 10% without economic restrictions and
outperforms AQR6 by 4% to 30% with economic restrictions. Moving to the
GMVP in Panel C, the integrated model delivers a higher Sharpe ratio than
the best benchmark model FF6 across all ¢ values, and the improvement

85UB017 SUOWILIOD 3A1e81D 8|qedljdde ay) Aq peusenob ase ssjoie YO ‘s J0 S8|ni o AreiqiT8uliuO A8|IM UO (SUOTHPUOD-PUR-SLLBILI0D A3 1M ARIq 1 U1 IUO//SANY) SUOIPUOD PUe SWiB | 3y} &8s *[£202/50/60] Uo Ariqiauljuo AB|1M ‘SeLeiqi AVseAlun asndels Ad 92zET HOTTTT'OT/I0p/wod A8 M Areiq puljuo//Sdny wouy papeojumod ‘€ ‘€202 ‘T9Z90VST



Integrating Factor Models 1627

Table VI
Out-of-Sample Sharpe Ratio: Alternative Prior Sharpe Multiple

Panel A presents the in-sample and out-of-sample annualized Sharpe ratio of the three top-ranked
individual models based on the Bayesian procedure (denoted as Top 1, Top 2, and Top 3) and the
integrated model (denoted as BMA). The investment universe consists of the 14 factors listed in
Panel A of the Internet Appendix Table IA.I, and we employ alternative prior Sharpe multiples
of t = 1.25, 2, and 3. The columns “EST” report the in-sample Sharpe ratio computed in the full
sample (7'), as well as in the in-sample periods that correspond to half (%) and two-thirds (%) of
the sample. The columns “O0S” report the out-of-sample Sharpe ratio. We use all data in the in-
sample period to compute posterior probabilities and predictive moments based on the integrated
model. Panel B reports similar statistics with the Regulation-T constraint. That is, the sum of the
absolute tangency portfolio weights is set to be smaller than or equal to two, Zilﬁl |lw;| < 2. Panel
C reports similar statistics, where we replace the tangency portfolio with the global minimum
variance portfolio.

T

!
)
~

T Model EST EST 008 EST 008

Panel A: Tangency Portfolio

=125 Top 1 2.307 3.201 0.975 2.631 1.293
Top 2 2.159 3.247 1.013 2.611 1.277
Top 3 2.283 3.188 0.982 2.569 1.177
BMA 2.184 3.175 0.985 2.527 1.208
T=2 Top 1 2.124 3.370 0.961 2.771 1.550
Top 2 1.888 3.333 1.034 2.608 0.791
Top 3 1.929 3.339 0.971 2.628 1.311
BMA 2.163 3.338 0.946 2.613 1.271
=3 Top 1 0.583 3.619 0.980 2.719 1.046
Top 2 0.806 3.687 0.952 2.729 1.291
Top 3 0.784 3.709 0.908 2.649 1.203
BMA 0.744 3.634 0.982 2.737 1.253

Panel B: Tangency Portfolio with Regulation T

=125 Top 1 1.761 2.152 0.681 1.699 1.195
Top 2 1.395 2.252 0.711 1.650 1.103
Top 3 1.702 2.148 0.711 1.727 0.942
BMA 1.626 2.029 0.621 1.700 0.976
T=2 Top 1 1.628 2.355 0.733 1.788 1.628
Top 2 1.344 2.198 0.700 1.679 0.526
Top 3 1.309 2.309 0.912 1.720 1.452
BMA 1.569 2.392 0.652 1.841 1.018
=3 Top 1 1.410 2.626 0.404 1.796 0.695
Top 2 1.407 2.604 0.455 1.839 0.933
Top 3 1.679 2.827 0.482 1.688 0.961
BMA 1.481 2.802 0.586 1.878 0.819

Panel C: Global Minimum Variance Portfolio

=125 Top 1 1.865 2.605 1.068 2.396 0.909
Top 2 1.918 2.617 1.109 2.394 0.907

Top 3 1.911 2.606 1.066 2.153 0.961

BMA 1.927 2.902 1.062 2.424 1.121

(Continued)
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Table VI—Continued

Panel C: Global Minimum Variance Portfolio

T=2 Top 1 1.730 2.832 0.937 2.510 0.903
Top 2 1.737 2.837 0.973 2.392 0.876
Top 3 1.746 2.827 0.930 2.392 0.869
BMA 1.908 2.922 1.026 2.499 1.015
=3 Top 1 1.734 2.949 0.963 2.359 0.901
Top 2 1.734 2.951 0.970 2.388 0.940
Top 3 1.720 2.913 0.976 2.353 0.963
BMA 1.763 2.981 1.083 2.376 0.961

in Sharpe ratio ranges from 17% to 37%. The decisive evidence on GMVPs
confirms the meaningful impact of model uncertainty in asset pricing.

In addition, while the top-ranked individual models display similar in-
sample posterior probabilities and deliver promising performance, we observe
considerable variation in their performance and relative rankings. As shown
in Panel B, when t = 2, the first-ranked (second-ranked) model generates an
annualized Sharpe ratio of 1.628 (0.526) after applying economic restrictions,
and it significantly outperforms (underperforms) the best benchmark model
AQRG6 with an annualized Sharpe ratio of 0.785 and the integrated model with
an annualized Sharpe ratio of 1.018. Moving to the GMVP in Panel C, the in-
tegrated model outperforms all top-ranked individual models for r = 1.25 and
2 and outperforms two of the three top-ranked individual models for z = 3.
Furthermore, the third-ranked model has the highest out-of-sample Sharpe
ratio for t = 1.25 and 3, while the first-ranked model yields the highest out-of-
sample Sharpe ratio for r = 2.

Overall, accounting for model uncertainty yields a rather stable, superior,
and admissible out-of-sample Sharpe ratio and mitigates the downside risk
of the investment. The proposed investment strategy based on the integrated
model benefits from factor rotation, especially by tilting away from the sub-
sequently underperforming factors. Our findings are robust to imposing eco-
nomic restrictions on the prior Sharpe ratio and stock positions as well as
using alternative in-sample periods. Analyses of the GMVP further highlight
the impact of model uncertainty on the covariance matrix of stock returns.
In addition, the Bayesian approach is instrumental in identifying competent
models, while we should remain cautious that model selection based on a sin-
gle or a few top-ranked models could provide an unstable description of asset
return dynamics.

VI. Dissecting Model Uncertainty

In this section, we conduct four experiments to highlight the role of model
uncertainty in shaping the investment opportunity set. We first implement
a variance decomposition to shed light on how model uncertainty affects
the perceived risk of equities. We then analyze the relative contribution of
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model disagreement to the covariance matrix, as measured by the increase in
entropy. Third, we investigate how candidate models disagree on mispricing,
factor loadings, and risk premia over time. Finally, we examine the dispersion
in portfolio choice and performance to further assess the economic consequence
of model disagreement.

A. Variance Decomposition

The first experiment compares the sample variance of factor returns with
the variance based on the integrated model. In particular, from variance de-
composition, we obtain

Var(r; 1) = E[Var(r;;1lz:)] + Var[E(ry112¢)], (24)

where Var(r;,1) is the unconditional variance and E[Var(r;,1|z;)] is the (time-
series) average of conditional variance. The variance decomposition is condi-
tioned on a particular factor model and the parameter space underlying that
model. For notational convenience, we drop such dependencies.

Resorting to sample estimates, the variance of each factor should be higher
than the mean of the conditional variance. This is because, in population, the
inequality Var(r; 1) > E[Var(r,1|z;)] is binding. However, Var(r;,1|z;) does not
incorporate model disagreement and the mixture of estimation risk empha-
sized by our approach. Thus, the variance perceived by a Bayesian investor
that accounts for model uncertainty is higher than Var(r;,1|z;).

Taken together, the difference between the sample analog of Var(r;,1) and
the sample average of Var[r;.1|D] depends on the net effect of the two con-
flicting forces and remains an empirical question. If model uncertainty plays a
significant role in asset pricing, we expect the sample average of the variance
based on the integrated model to exceed the sample (unconditional) variance.

To proceed, we compute (i) the sample average of the variance based on the
integrated model, defined as the time-series average of the diagonal elements
of the covariance matrix, that is, Var[r;1|D] in equation (5), and (ii) the sample
variance computed from realized factors returns. We consider three in-sample
periods that correspond to the full sample (7") half the sample (%) and two-
thirds of the sample (%) under a prior Sharpe multiple of 1.5, and compute
the in-sample and out-of-sample variance of each factor.

Table VII presents the results, where the columns “EST” and “O0OS” corre-
spond to the in-sample and out-of-sample results, respectively. In the full sam-
ple, 8 out of 14 factors display higher variance based on the integrated model
(denoted as V; + Q;) than the sample variance (denoted as OBS). Likewise, us-
ing % of the sample as an in-sample period, 8 out of 14 factors display higher
variance based on the integrated model than the sample variance during the
out-of-sample period. Notably, the gap between the integrated model variance
and sample variance widens considerably out-of-sample, and the integrated
model variance is on average 53% higher than the sample variance across all
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Table VII
BMA Model Variance and Sample Variance

This table presents the in-sample and out-of-sample variance of each factor. We report (i) the
sample average of the variance based on the integrated model (denoted as V; + ), defined as
the time-series average of the diagonal elements of the covariance matrix, Var[r; 1|D] in equa-
tion (5), and (ii) the sample variance computed from realized factors returns (denoted as OBS).
The columns “EST” report the in-sample variance computed in the full sample (7"), as well as in
the in-sample periods that correspond to half of the sample (%) and two-thirds of the sample (% ).
The columns “O0S” report the out-of-sample variance. The investment universe consists of the
14 factors listed in Panel A of the Internet Appendix Table IA.I, and we employ a prior Sharpe
multiple of r = 1.5.

T

N
o
~

EST EST 00S EST 00S

MKT 19.875 19.771 18.912 18.797 19.188 20.873 21.325 21.242 21.444 16.889
SMB 8.576 8507 6.779 6.743 6.885 10.438 9.968 9.928 10.018 5.653
HML 8.067 8417 6.432 6.376 6.506 10.643 9.182 9.362 8.880 6.491
RMW 5.070 5,553 2.086 2.004 2.057 9.402 6.520 6.963 6.793 2.695
CMA 3.923  3.901 2999 2941 3.124 4954 4814 4843 4.799 1.904
MOM  19.800 19.955 10.380 10.117 10.157 30.524 19.253 19.325 20.080 20.871
PEAD 3.602 3.587 2.114 2.093 2.148 5174 3294 3.281 3.309 3.971
FIN 15.047 15.319 8.114 8.058 8.551 23.180 18.732 18.998 19.238 7.684
QMJ 5.633 5605 2579 2561 2.614 8914 5280 5259 5306 6.330
BAB 12,982 13.255 7.957 7.619 8.629 19.166 15.680 15.939 16.189  7.673
MGMT 8.056 8.021 6.854 6.788 6.993 9.370 9.765 9.725 9.817 4.290
PERF 15932 15961 7.725 7.594 7.759 25.047 13.247 13.366 13.466 21.297
LIQ 11.977 11.681 10.287 10.023 10.508 13.476 11.203 11.100 11.237 12.902
ICR 45.186 44.746 40.582 40.182 41.258 49.493 43.998 43.363 44.240 47.397

14 factors. The integrated model variance is also more than double the sample
variance for the RMW, CMA, FIN, MGMT, and BAB factors.

Overall, the mixture of estimation risk and model disagreement components
in the covariance matrix jointly have a sizable impact on perceived risk, espe-
cially during the recent out-of-sample period. The rationale is that because the
investor does not know the correct factor model or the correct values of under-
lying model parameters, equities are perceived to be considerably riskier than
historical sample estimates.
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B. Time-Varying Model Disagreement: Entropy Increase

Our second experiment focuses on the model disagreement component in the
covariance matrix. In the BMA setup, the covariance matrix of stock returns
is defined in equation (5), where V; is the mixture of model-implied covariance,
and Q; summarizes the disagreement among candidate factor models about
expected stock returns, as defined in equation (6). While both components ac-
count for model uncertainty, @, is particularly informative for understanding
the implications of model disagreement.

To measure the relative contribution of the model disagreement component
to the covariance matrix, we rely on entropy, a standard measure from infor-
mation theory. For instance, Van Nieuwerburgh and Veldkamp (2010) model
the amount of information transmitted as the reduction in entropy achieved by
conditioning on that additional information. Let ¥ (X|D) be the covariance ma-
trix before (after) the information is revealed. The entropy reduction is given
by the ratio %, where |X| is the determinant of matrix ¥. Since learning
information D can reduce payoff uncertainty, a higher ratio indicates more in-
formation acquisition leading to uncertainty reduction.

Similar to the entropy reduction due to additional information, €; can be
perceived as an entropy extension arising from model disagreement. Hence,
we measure the contribution of the model disagreement component to the co-
variance matrix as the increase in entropy relative to the V; component (the
mixture of model-implied covariance),

Vi + Q|

El =
! \A

(25)

We compute the relative increase in entropy for the three in-sample periods
corresponding to the full sample (7"), half of the sample ( ), and two-thirds
of the sample (ZT) under a prior Sharpe multiple of 1.5. Panel A of Table VIII
reports the mean, 95 percentile, 99" percentile, and maximum of the entropy
increase, with the columns “EST” and “O0S” corresponding to the in-sample
and out-of-sample results, respectively. The increase in entropy is modest, on
average, but positively skewed, that is, the full-sample average is 1.010 but
increases to 1.069 at the 99" percentile and reaches a maximum of 1.379.
Using =5~ 2r ( ) as the in-sample period, we observe a significant entropy increase
of 1. 069 (1. 121) at the 99" percentile during the out-of-sample period, and the
maximum entropy increase is even more prominent at 1.085 (1.195).

Figure 3(a), Panel A, plots the time series of the entropy increase for the
three in-sample periods. The blue dashed lines mark the end of the in-sample
periods for % and % While the average increase in entropy is small, it spikes
dramatically during major market downturns, such as Black Monday in Octo-
ber 1987 and the recent financial crisis starting in September 2008. Our find-
ings support the view that asset pricing models disagree significantly about
expected stock returns at times of crash events in the financial market, which
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Table VIII
BMA Model Uncertainty: Entropy Increase

Panel A presents the in-sample and out-of-sample entropy increase, EI; in equation (25). We report
the mean, 95 percentile, 99t percentile, and maximum of the entropy increase. The columns
“EST” report the in-sample entropy increase computed in the full sample (7'), as well as in the
in-sample periods that correspond to half of the sample (%) and two-thirds of the sample (%).
The columns “O0S” report the out-of-sample entropy increase. The investment universe consists
of the 14 factors listed in Panel A of the Internet Appendix Table IA.I, and we employ a prior
Sharpe multiple of 7 = 1.5. Panels B and C report the average and maximum contribution of each
factor to the entropy increase, EI}, ;, in equation (26).

T 27

T z 3
EST EST 00Ss EST 00Ss

Panel A: Entropy Increase

Mean 1.010 1.009 1.026 1.005 1.012
95t Petl. 1.013 1.014 1.053 1.007 1.049
99th Petl. 1.069 1.017 1.121 1.009 1.069
Max 1.379 1.209 1.195 1.098 1.085

Panel B: Average Contribution to the Entropy Increase

MKT 3.077 8.173 12.842 10.877 17.246
SMB 12.686 8.619 10.484 9.562 7.957
HML 3.080 11.610 13.226 5.116 7.723
RMW 2.175 4.531 4.325 5.127 4.027
CMA 3.020 3.630 4.491 4.298 5.505
MOM 7.936 8.169 3.568 5.656 3.573
PEAD 2.464 4.349 3.239 1.452 2.021
FIN 2.784 3.274 3.791 4.572 5.462
QMJ 7.961 2.826 3.517 5.513 9.170
BAB 11.505 14.687 14.761 6.568 4.663
MGMT 7.430 7.193 9.694 7.810 12.623
PERF 6.704 9.268 4.775 6.764 3.889
LIQ 21.493 3.356 4.263 11.724 5.715
ICR 7.685 10.316 7.024 14.960 10.426

Panel C: Maximum Contribution to the Entropy Increase

MKT 20.671 19.363 19.763 19.727 25.747
SMB 24.881 22.289 22.957 24.587 13.217
HML 6.503 15.252 17.011 9.172 9.592
RMW 4.890 11.541 10.632 8.138 6.339
CMA 6.112 5.690 6.813 8.290 9.562
MOM 32.882 15.881 11.341 10.937 8.715
PEAD 7.559 7.513 6.585 5.527 5.450
FIN 7.946 5.034 5.083 9.633 8.474
QMJ 21.714 6.075 5.750 10.985 12.617
BAB 25.010 29.716 30.836 14.740 13.094
MGMT 15.934 12.338 11.775 16.400 16.836
PERF 17.779 17.075 9.781 15.012 8.435
LIQ 41.740 10.512 9.023 21.592 10.389
ICR 26.268 15.651 12.681 23.430 16.664
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(a) Model disagreement over time.
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Figure 3. Model disagreement: Entropy increase. This figure plots the contribution of the
model disagreement component to the covariance matrix over time. We employ a prior Sharpe
multiple of = 1.5, and consider three in-sample periods that correspond to the full sample (7"),
half of the sample (%), and two-thirds of the sample (%). Panel A plots the time series of the rela-
tive increase in entropy, EI;, in equation (25). Panel B plots, for each factor, the time series of the
contribution to the overall entropy increase, EI ; in equation (26). The blue dashed lines mark the
end of the in-sample periods for % and % (Color figure can be viewed at wileyonlinelibrary.com)
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makes stocks appear riskier. Hence, accounting for model uncertainty becomes
more important during crash periods, consistent with our previous finding that
the BMA procedure mitigates the downside risk of the tangency portfolio and
the GMVP.

Beyond the aggregate entropy increase resulting from the entire investment
universe, we estimate the contribution of each factor to the entropy increase.
In this experiment, we zero out the off-diagonal elements of ©; in equation (6).
Let 9, be a matrix with only the k' diagonal element equal to the corre-
sponding diagonal element of Q; and with other elements equal to zero, where
kel,2, ..., K, with K denoting the maximal number of factors. Similar to the
definition in equation (25), we define the entropy increase attributed to factor
k at time ¢ as

Ve 4 2.4

ElL ., =
kit Vil

(26)

When each factor is associated with a small entropy increase, that is, EI}, ; ~
1 for every k, a first-order approximation holds—]_[ff:1 El,; ~ EI;. However,
when the entropy spikes, the first-order approximation no longer holds due to
a large component of higher order mutual factor interactions. We therefore nor-
malize the measure and define factor %’s first-order contribution to the entropy
increase as

log(EIL;)

_ L)
REIk,t T K log(EL)" 0

J=1 Tog(EI)

We consider three in-sample periods corresponding to the full sample (7"),
half of the sample (%), and two-thirds of the sample (%) under a prior Sharpe
multiple of 1.5 and compute the in-sample and out-of-sample contribution of
each factor to the increase in entropy. The results are reported in Table VIII,
with Panels B and C corresponding to the average and maximum factor con-
tributions, respectively. As shown in Panel B, the LIQ factor stands out, as it
contributes 21% of the total entropy increase in the full sample, followed by the
SMB and BAB factors. Jointly, the top three factors account for 46% of the total
entropy increase. Moving to the out-of-sample test using % as the in-sample
period, the market, MGMT, and ICR factors carry a sizable disagreement com-
ponent and jointly contribute 40% of the overall entropy increase.

Since the model disagreement component in the overall covariance matrix
can be low in normal times but spike occasionally, we are also interested in
extreme scenarios. As shown in Panel C, the market, SMB, BAB, MGMT, and
ICR factors display drastic entropy increases: all five factors uniformly have a
maximum contribution of at least 10% across all in-sample and out-of-sample
periods. A possible underlying mechanism is that in addition to the market
factor, the other factors also vary significantly with market conditions. For in-
stance, the SMB factor is stronger after periods of low sentiment because small
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stocks are more likely to be overpriced during high-sentiment periods, and
the subsequent correction reduces the size effect (Baker and Wurgler (2006)),
the BAB factor is exposed to funding liquidity risk and exhibits lower realized
returns following periods with more binding funding constraints (Frazzini
and Pedersen (2014)), the MGMT factor is significantly higher following high
sentiment episodes due to the correction of overpriced stocks in the short leg
(Stambaugh and Yuan (2017)), and the ICR factor is strongly procyclical and
low intermediary capital growth coincides with adverse economic shocks (He,
Kelly, and Manela (2017)). Together, the market, MGMT, and ICR factors
play a critical role in driving the time-varying model disagreement component
in the covariance matrix both on average and in the extreme, especially for
the recent out-of-sample performance. We confirm this finding in Figure 3(b),
Panel B, where for each factor, we plot the contribution to the overall entropy
increase over time using the three aforementioned in-sample periods.

C. Disagreement about Mispricing, Loadings, and Risk Premia

We next analyze how mispricing, factor loadings, and risk premia affect
model disagreement over time. Per equations (IA.115) and (IA.117) in the In-
ternet Appendix VIII, expected returns are determined by the following seven
model-specific components: (i) fixed mispricing («p), (il) time-varying mispric-
ing (12;), (iii) fixed factor loadings with fixed risk premia (Boay), (iv) fixed
factor loadings with time-varying risk premia (Boarz;), (v) time-varying factor
loadings with fixed risk premia (8,(I ® z;)a), (vi) time-varying factor loadings
with time-varying risk premia (81(I ® z;)arz;), and (vii) time-varying risk pre-
mia (apz;).

For each of the 14 asset pricing factors, we assess the dispersion in the seven
return components across positive probability models.?® To illustrate, the dis-
persion corresponding to factor £’s fixed mispricing component, «g, is computed

as ol = \/Zlele x (oo p1t — @kt )%, where P, is the posterior probability
for model [, o 1. ; ; is the fixed mispricing component for factor 2 based on model
L, oo = Zf‘zl P, x ag 1+ is the average fixed mispricing component for factor
k across all candidate models, L is the total number of models, 2 € 1,2,... K,
and K is the maximal number of factors.

Table IX presents the results, with Panels A and B corresponding to the av-
erage and maximum of each model disagreement component, respectively. We
employ the in-sample period that corresponds to two-thirds of the sample (%)
and a prior Sharpe multiple of 1.5. The columns “EST” and “O0OS” report the
in-sample and out-of-sample results, respectively. We find that model disagree-
ment, reflected through the dispersion measure, appears in all components and
is highly skewed. Focusing on the out-of-sample period, the maximum disper-
sion is 2.94 to 9.27 times its mean across all factors. For instance, the maxi-

28 For computational efficiency, we take the top one million models to compute the mean, vari-
ance, and dispersion. The cumulative probability of these models equals 0.995488. We renormalize
their posterior probabilities, so they sum to one.
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Figure 4. Model disagreement in mispricing, factor loadings, and risk premia. This fig-
ure plots, for each factor, the time series of the model disagreement in time-varying mispricing
(a12¢), fixed factor loadings with time-varying risk premia (Byarz;), time-varying factor loadings
with fixed risk premia (81(I ® z;)ay), time-varying factor loadings with time-varying risk premia
(B1( ® 2zt )apz;), and time-varying risk premia (azz;), as defined in equations (IA.115) and (IA.117)
in the Internet Appendix VIII. We employ a prior Sharpe multiple of t = 1.5, and consider the
in-sample period that corresponds to two-thirds of the sample (%). The blue dashed lines mark
the end of the in-sample period for % . (Color figure can be viewed at wileyonlinelibrary.com)

mum dispersion in time-varying factor loadings with time-varying risk premia
(B1( ® z;)apz;) in Panel B is on average 9.27 times its mean in Panel A across
all factors, and the maximum dispersion in time-varying mispricing («12;) is
5.24 times its mean.

Figure 4 plots the model disagreement components for each factor over time.
We observe spikes in all components during crash periods for most factors.
We further find that model disagreement regarding the time-varying factor
loadings with time-varying risk premia (81(I ® z;)arz;) is 5.84 times its in-
sample mean around October 1987 and 2.10 times its out-of-sample mean
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around September 2008.2° In addition, the model disagreement regarding
time-varying mispricing («1z;), time-varying factor loadings with fixed risk
premia (81(I ® z;)ay), time-varying risk premia (arz;), and fixed factor load-
ings with time-varying risk premia (Boarz;) is 88%, 65%, 27%, and 21% higher
during crash events out-of-sample. These experiments thus suggest that dur-
ing crash episodes, candidate models significantly disagree more on mispricing,
factor loadings, and risk premia. They could jointly contribute to the overall
entropy increase in Figure 3(a), Panel A.

D. Dispersion in Portfolio Choice and Performance

Finally, we investigate whether individual models differ in their portfo-
lio choice and performance. This provides yet another way to understand
the merits of model integration. For each factor k2, we compute the dis-
persion in portfolio choice across positive probability models as o(w); =

\/ ZzL:1 P, x (wp s — wps)?, where P, is the posterior probability for model I,
wr ¢ is the weight for factor £ in the tangency portfolio based on model /,
Wyt = ZZL:1PZ x wp 1+ 18 the average weight for factor £ in the tangency port-
folio across all candidate models, L is the total number of candidate models,
kel,2,...,K, and K is the maximal number of factors.

Similarly, we compute the dispersion in individual model performance as

o(r)s1 = \/Zlepl x (rps11 —1e41)%, where 17,41 = 22{21 Whit X [ris1s Tev1 =
Z{‘zl P, x 11441, fres1 is factor £’s return at time ¢ + 1, and all other variables
are defined as in o (w)y ;.

We present the findings in Table X. Panel A reports the mean, 95% per-
centile, 99" percentile, and the maximum of the dispersion in the tangency
portfolio weights for each factor. We employ the in-sample period that corre-
sponds to two-thirds of the sample (%) and a prior Sharpe multiple of 1.5. The
columns “EST” and “O0S” report the in-sample and out-of-sample results, re-
spectively. Focusing on the out-of-sample period, we find that the average dis-
persion in tangency portfolio weights ranges between 0.008 and 0.045 across
all factors. The distribution is also skewed in general, with the dispersion rang-
ing between 0.014 and 0.099 at the 99" percentile and between 0.017 and
0.103 at the maximum. When compared with the average weights in the tan-
gency portfolio based on the integrated model (Table V), the dispersion among
candidate models accounts for 11% to 29 times of the absolute average weight
across all factors, with a mean (median) of four times (35%).

Panel B reports similar statistics for the dispersion in the tangency portfolio
returns. We find a sizable dispersion in model performance with an average of
0.206 out-of-sample, and it increases sharply to 0.921 at the 99 percentile and
1.670 at the maximum. For perspective, the average tangency portfolio return
(r¢11) is 0.555 during the same period.

29 We consider a six-month window around October 1987 (July to December 1987) and Septem-
ber 2008 (June to November 2008) as crash periods.
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Figure 5(a), Panels A and B, plots the time series of the dispersion in
tangency portfolio weights for each factor and of model performance, respec-
tively. Consistent with the spikes in entropy during major market downturns
(Figure 3[a], Panel A), candidate models significantly disagree more in their
portfolio choice for almost all factors at the same time. While the dispersion
in portfolio choice is small on average but spikes during market crashes,
the dispersion in model performance is more volatile over time due to the
interaction of portfolio weights with realized factor returns. The evidence
thus suggests that candidate models vary in their portfolio choice and model
performance, with dispersion rising significantly at times of crash events in
the financial market. Therefore, accounting for model uncertainty is highly
relevant for practitioners in portfolio construction and risk management.

Overall, we find that asset pricing models disagree significantly about ex-
pected stock returns during market crashes. The spikes in model disagreement
are attributed to the various return components involving mispricing, factor
loadings, and risk premia. We also observe similar spikes in the dispersion in
portfolio choice and model performance during crash episodes. Our findings
support the view that accounting for model uncertainty effectively mitigates
downside risk and enhances performance.

VII. Conclusion

This paper develops a comprehensive Bayesian framework to study average
stock returns and the covariance matrix in the presence of model uncertainty.
The framework combines a large universe of candidate factor models into an
integrated model. Prior beliefs about the entire parameter space are econom-
ically interpretable and weighted against deviations from unconditional mod-
els. The integrated model is used to assess the strength of factors and predic-
tors in explaining the joint dynamics of stock returns. The empirical analyses
apply to a set of 14 factors and 13 macro predictors. The model space exceeds
52 million models that differ with respect to the set of factors and predictors,
while some factor models hold exactly and others admit mispricing.

We first document that a fairly large number of models record a positive
and meaningful probability with no clear winner. Furthermore, the underlying
return-generating process exhibits considerable mispricing and is uniformly
dominated by models with time-varying parameters. We next show that the
PEAD, QMJ, and intermediary capital factors are potent factors in conditional
asset pricing.

From an investment perspective, the integrated model delivers a stable, su-
perior, and admissible out-of-sample Sharpe ratio and mitigates downside risk
for both the tangency portfolio and the GMVP. The integrated model mitigates
adverse investment outcomes by tilting away from the subsequently underper-
forming factors. In addition, the Bayesian approach is instrumental in identi-
fying competent individual models, while model selection based solely on top-
ranked individual models could provide unstable forecasts.

We finally show that a Bayesian agent who accounts for model uncertainty
could perceive equities to be considerably riskier due to model disagreement
about expected returns. During adverse market conditions, competing factor
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(a) Dispersion in Tangency Portfolio Weights Over Time
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Figure 5. Dispersion in portfolio choice and performance. Panel A plots, for each factor,
the time series of the dispersion in tangency portfolio weights. Panel B plots the time series of the
dispersion in tangency portfolio returns. We employ a prior Sharpe multiple of © = 1.5, and con-
sider the in-sample period that corresponds to two-thirds of the sample (%). The blue dashed lines

mark the end of the in-sample period for % . (Color figure can be viewed at wileyonlinelibrary.com)
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models with substantial posterior probabilities considerably disagree on all
return components involving mispricing, factor loadings, and risk premia.

Initial submission: September 15, 2021; Accepted: January 13, 2022
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